

LEONARD M. OSBORNE • CE 38573 DAVID R. GERVAN • CE 57282 DAVID N. LINDBERG • PG 5581/CEG 1895 FRANK R. BICKNER • PG 7428

RONALD C. CHANEY, Ph.D . CE 29027/GE 00934

LETTER OF TRANSMITTAL

TO:	HCDEH	DA ⁻	ГЕ:	November 28, 2005			
	100 H St., S	uite 100	JOE	3 NO.:	3888.02		
	Eureka, CA	95501	PR0	DJECT:	Blue Lake Market	_	
ATTN:	Mark Verhey	/					
TRANS	MITTED BY:	⊠ Mail	Delivered In	Person	☐ Fax		
No. Cop	oies	Description					
1	1.	Report of Fi	indings: Boring and M	Monitorin	g Well Installation		
	2.						
	3.					_	
	4.			<u>.,.,.</u>		_	
	5.					_	
	6.					_	
REMAR	RKS:					_	
THIS MATERIAL SENT FOR:		NT FOR:					
			Approval				
cc: Pa	it Folkins		By: _		Timothy D Nelson		

REPORT OF FINDINGS: BORING AND MONITORING WELL INSTALLATION

Blue Lake Market 410 Railroad Avenue Blue Lake, California

LOP NO. 12229

Prepared for: Pat Folkins

2020 Ardagh Court Eureka, California 9550

> No. 7579 Exp.05/31/©⊋

Timothy D. Nelson, PG 7579, Exp. 32

David R. Gervan, RCE 5728

TABLE OF CONTENTS

EXEC	UTIVE SUM	MARY	-	-	_	-	-	-	-	PAGE 1
INTRO	ODUCTION	-	-	-	-	ada	-	-	-	PAGE 2
FIELD) METHODS	AND LA	ABORA	TORY	ANAL	YSIS	-		-	PAGE 3
•	Temporary I	Boring In	stallatio	on, Sam	pling, a	nd Clos	ure	_	-	PAGE 3
•	Monitoring '	Well Inst	allation	-	-	-		-	-	PAGE 3
•	Laboratory A	Analysis	-	-	-	-	-	-	-	PAGE 4
RESU:	LTS OF INV	ESTIGA'	TION	_	_	-	_	-	_	PAGE 5
•	Soil Laborat	ory Anal	ytical R	esults	-	-	_	_	_	PAGE 5
•	Groundwate	r Laborat	ory Ana	alytical	Results	-	-	-	-	PAGE 7
DISCU	JSSION-		-	-	-	-	-	-	-	PAGE 7
•	Fate and Tra	nsport	-	-	-	-	-	-	-	PAGE 9
CONC	LUSIONS	<u></u>	-	-	-	-	-	-	-	PAGE 11
RECO:	MMENDATI	ONS	-	-	-	-		-	-	PAGE 11
LIMIT	ATIONS	-	-	-	-	-	-	-	-	PAGE 12
I IST C	OF FIGURES	TARIF	S ANT) ATT	CHME	NTS	_	_	_	PAGE 12

REPORT OF FINDINGS:

BORING AND MONITORING WELL INSTALLATION

Blue Lake Market; 410 Railroad Avenue, Blue Lake, California LOP No. 12229; LACO Project No. 3888.02

EXECUTIVE SUMMARY

Additional fieldwork to evaluate soil and groundwater contamination presumed to originate from the former 550-gallon underground storage tank (UST) at the Blue Lake Market (hereafter referred to as the "market site") was conducted in September 2005. The market site is located at 410 Railroad Avenue, Blue Lake, California. The current owner and responsible party for cleanup is Mr. Patrick Folkins. The site is presently an active retail market. No active USTs or fueling dispensers are located at the market site. A site location map is presented as Figure 1. The work activities were performed in general accordance with LACO ASSOCIATES' (LACO's) Interim Remedial Action Plan and Supplemental Boring Installation Workplan (IRAP), dated November 18, 2004, and Revised Boring/Monitoring Well Location Map (Addendum), dated June 22, 2005. The IRAP and Addendum were approved by the Humboldt County Division of Environmental Health (HCDEH) in correspondence dated December 23, 2004, and in a meeting with the HCDEH on June 17, 2005. During the current investigation, LACO performed the installation of four temporary borings (B11 through B14) and two permanent monitoring wells (MW4 and MW5) in the presumed down-gradient direction of the market site using direct push technology. At each of the four boring locations, soil and grab groundwater samples were collected. Soil samples were also collected during the installation of monitoring wells.

There is another former UST site (Blue Lake Belting and Leather Works [BLW site], LOP No. 12012) located immediately up-gradient of the market site at 411 Railroad Avenue. Three USTs (one 1,000-gallon, one 750-gallon, and one 650-gallon) were formerly in operation at the BLW site.

It appears that the petroleum hydrocarbon plume originating from the BLW site is compounding the concentrations of contamination at the market site during seasonal gradient direction fluctuations to the southwest. Based on the distribution of contaminants originating from both sites, it appears that a

strong hydraulic gradient direction to the southeast is not present at the site. It appears that the

dominant hydraulic gradient direction is toward the south-southwestern extent of Powers Creek.

Analytical results and gradient calculations in newly installed monitoring wells MW4 and MW5 will

provide more information regarding these observations.

Recommendations include:

• The submittal of a brief letter workplan outlining the installation of four temporary borings in

Railroad Avenue to determine the mass flux of contaminants in soil and groundwater

migrating onto the market site from the BLW site that are compounding contaminant

concentrations at the market site. The borings will be installed up gradient of monitoring well

MW2 and between monitoring wells MW2 and MW3. LACO will submit a brief letter report

of findings for the boring installation.

The submittal of a limited site conceptual model including updated cross-sections to support

the assumptions discussed in the *Fate and Transport* section of this report.

• The submittal of a limited Contamination Assessment Plan/feasibility study (CAP) that

addresses three remedial alternatives, feasibility, costs, and the selected alternative. After the

CAP is approved by the HCDEH, submit a Remedial Action Plan (RAP) Addendum to the

previously submitted RAP dated November 18, 2004. Modify the mass calculations in the

RAP Addendum as appropriate.

• After the RAP Addendum is approved by the HCDEH, implement the selected remedial

alternative, if appropriate.

INTRODUCTION

The purpose of the current investigation was to further delineate petroleum hydrocarbons in soil and

groundwater in the area adjacent to the former pump island dispenser and UST (primary sources),

and in the areas southwest to southeast of the primary sources. This Report of Findings contains

details of the September 2005 boring and monitoring well installation, sampling and drilling

methodologies, a summary of soil and groundwater laboratory results, discussion of findings, and

conclusions regarding the fate/transport and delineation/separation of the groundwater contaminant

plumes from the market and BLW sites.

FIELD METHODS AND LABORATORY ANALYSIS

Temporary Boring Installation, Sampling, and Closure

Borings B11 through B14 were installed using direct push technology. Continuous cores were

collected using macrocore rods with an outside diameter (OD) of 2.125 inches, fitted with plastic

sample liners to facilitate the collection of soil samples. Soil samples were collected at approximate

4-foot intervals and at zones of obvious contamination. Soil samples were collected from the plastic

liners of the macrocore sampling apparatus and placed directly into brass tubes, sealed with Teflon,

and capped. The soil lithology was analyzed and logged in general accordance with ASTM-2488.

Grab groundwater samples were collected using a screen point sampler with dedicated disposable

PVC tubing, equipped with a check valve, and were decanted directly into laboratory-supplied

containers (40-milliliter glass vials). Grab groundwater was generally collected from the 12 to 16 feet

below ground surface (bgs) sampling interval within the open borehole. The locations of current and

historic borings are presented in Figure 2. Boring logs from the current investigation are included in

Attachment 1. Copies of the current laboratory analytical results are included as Attachment 2.

The borings were closed with bentonite to approximately 0.5 feet bgs, and cold-patch asphalt to

grade. Rinse water was containerized and stored on-site in steel, 55-gallon, DOT-approved drums

pending characterization and disposal. All drilling and sampling equipment was decontaminated

before and after each use with Alconox and a pressure washer.

Monitoring Well Installation

On September 14, 2005, LACO installed two monitoring wells (MW4 and MW5), both with screen

intervals of 10 to 15 feet bgs. Monitoring wells were installed using a direct push drill rig fitted with

dual tube 3.25-inch OD rods. Prior to the installation of monitoring wells MW4 and MW5 using dual

tube rods, continuous cores were collected to 15 feet bgs using macrocore rods with an OD of 2.125

inches, fitted with plastic sample liners to facilitate the collection of soil samples.

Page 3 – November 28, 2005

The wells were constructed with 1.5-inch diameter Schedule 40 PVC pipe with 0.010-inch slotted

pipe over the screened intervals mentioned above, and blank pipe from the top of the screened

interval to the ground surface. The annular space was filled with No. 2/16 sand from the total depth

to 1 foot above the screened interval. Cement slurry was placed from the sand pack to 1.5 feet bgs.

The wells were then completed with locking well caps and flush-mount access boxes with a locking,

watertight lid, set in an apron of traffic-rated concrete extending at least 6 inches from the access

box. Monitoring well logs are included in Attachment 1.

Soil samples were collected from monitoring well MW4 at 8, 12, 14, and 16 feet bgs, and from

monitoring well MW5 at 4, 8, 12, and 16 feet bgs. Samples were collected directly from continuous

core liners into laboratory-supplied brass tubes, sealed with Teflon, and capped. The soil lithology

was analyzed and logged in general accordance with ASTM-2488. Copies of the current laboratory

analytical results are included as Attachment 2.

Monitoring wells MW4 and MW5 were developed on September 26, 2005. Please see Attachment 3

for monitoring well development records. Groundwater samples will be collected from all

monitoring wells during the next quarterly sampling event, tentatively scheduled for December 2005.

Laboratory Analysis

The soil and groundwater samples were placed in a cold cooler to ensure the preservation of the

analytes, and transported under standard chain-of-custody protocols to North Coast Laboratories in

Arcata, California.

Soil samples were submitted for analysis of:

• Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 5035/GCFID(LUFT)/EPA

8015B

• Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method EPA 5035/EPA

8021B

• Methyl tertiary butyl ether (MTBE) by EPA Method EPA 5035/EPA 8021B

Page 4 – November 28, 2005

Report of Findings: Boring and Monitoring Well Installation; LOP No. 12229

Blue Lake Market; Project No. 3888.02

Groundwater samples were submitted for analysis of:

• TPHg by EPA Method 8260 List 1

BTEX by EPA Method 8260 List 1

• MTBE by EPA Method 8260 List

RESULTS OF INVESTIGATION

Soil Laboratory Analytical Results

The highest concentrations of TPHg detected in soil for the current investigation were in boring B13,

located adjacent to the former pump island dispenser (Table 1). TPHg was reported at the 8, 10, 12,

13.5, and 16 feet bgs sampling intervals at concentrations of 940 μ g/g, 150 μ g/g, 1,300 μ g/g, 3,000

 $\mu g/g$, and 1.5 $\mu g/g$, respectively. It appears that the core of the soil plume noted in this boring is

located from approximately 12 to 13.5 feet bgs, with an order of magnitude reduction noted above

from 8 to 12 feet bgs, and two orders of magnitude reduction below at 16 feet bgs. The smear zone

appears to extend from approximately 8 to 16 feet bgs. However, no soil samples were collected

between 1.6 and 8 feet bgs, so contamination in soil may be shallower than 8 feet bgs.

Boring B11 was located approximately 95 feet south of the former UST in the parking lot of the

historic Schull building. Boring B12 was located approximately 75 feet southwest of the former UST

along the southern side of South Railroad Avenue. Boring B14 was located approximately 60 feet

southeast of the former UST, behind the market structure, near the old railroad grade located south

and adjacent to the site. Lesser concentrations of TPHg were noted in boring B11 at 11.5 and 15.5

feet bgs (1.8 μ g/g and 6.4 μ g/g, respectively); and, in boring B14 at 8, 10, and 14 feet bgs (2.5 μ g/g,

5.1 µg/g, and 3.7 µg/g, respectively). No analytes were reported at all sampling intervals for boring

B12. All samples exhibited a significant lack of BTEX concentrations, indicating a degraded

secondary source. No MTBE was detected in any of the soil samples. In the case narrative, the

laboratory noted that the reported TPHg concentrations in soil and groundwater do not present the

peak pattern consistent with a fresh gasoline standard, and that the reported results represent the

amount of material in the gasoline range. These comments are typical at sites that exhibit degraded or

weathered petroleum characteristics. Figure 3 presents soil analytical results from the current

investigation.

Figure 4 presents a current and historic TPHg soil isoconcentration map using soil analytical data

from the BLW site concurrently with the market site (Tables 1 and 2). In Figure 4, 1,000 µg/g and

100 µg/g isoconcentration contours are illustrated for the market and the BLW sites. Lesser

isoconcentration contours are not illustrated. For the market site, two areas exhibiting concentrations

in soil greater than 1000 µg/g are presented. One area (MW2 and B13) is located adjacent to the

former pump island and dispenser, and the other area (B5) is located immediately down-gradient of

the former UST cavity. The 100 µg/g isoconcentration contour extends approximately 60 feet south

from the location of the former pump island and dispenser. For the BLW site, the 1000 µg/g

isoconcentration contour encircles the location of the former pump island and one of the former

USTs (750-gallon). The 100 μg/g isoconcentration contour extends from the BLW site to the market

site structure, based on the detected concentrations reported for samples collected during the

installation of monitoring well MW3; and, its final limits are unknown as shown by the dashed

contour line and question marks. Based on the information provided in Figure 4, it appears that the

TPHg soil plume presumed to originate from the market site is limited in extent as concentrations

substantially decreased in borings (B2-01, MW5, and B7) located further downgradient.

Additionally, soil contamination reported from former boring B2 and monitoring well MW2 is

located up-gradient from the former pump island at the market site. It is likely that this soil

contamination originated from the BLW site. Additional borings located up-gradient of monitoring

well MW2, between monitoring wells MW2 and MW3, will provide additional information

regarding the impact to soil at the market site from the up-gradient BLW site.

It is unclear whether soil contamination detected in borings installed into the old railroad grade (B7,

B14, B3-01, B4-01) originated from the market site or the BLW site. These borings that exhibited

detections in soil are located further from the former primary sources at each site. However, as the

surface topography slopes significantly to the south, and contamination in groundwater can migrate

and become sorbed to soil down gradient of a site, it is possible that a 10 µg/g isoconcentration

Page 6 - November 28, 2005

Report of Findings: Boring and Monitoring Well Installation; LOP No. 12229

Blue Lake Market; Project No. 3888.02

contour could be illustrated from the former primary sources located at the BLW site to the locations

of B3-01 (94 μ g/g) and B4-01 (62 μ g/g).

Groundwater Laboratory Analytical Results

Groundwater analytical results in borings for the current investigation are presented in Figure 5.

Figure 6 presents a current and historic TPHg groundwater isoconcentration map using groundwater

analytical data from the BLW site concurrently with the market site (Tables 3 and 4). The highest

concentration of TPHg in groundwater for the current investigation was reported from boring B13,

located adjacent to the former pump island at the market site. TPHg and BTEX were reported at

concentrations of 280,000 μ g/L, 25 μ g/L, 60 μ g/L, 3,900 μ g/L, and 15,300 μ g/L, respectively. The

elevated concentration of TPHg is indicative of degraded free product. A petroleum hydrocarbon

sheen and strong petroleum odors were observed during the collection of groundwater samples from

boring B13. Concentrations of TPHg in borings B11 and B14 exhibited two orders of magnitude

reduction. Concentrations of BTEX were generally one order of magnitude higher in boring B14 than

in B11. Additionally, the concentration of benzene in boring B14 was the highest reported for the

current investigation. No MTBE was detected in any of the groundwater samples.

DISCUSSION

Figure 6 presents TPHg isoconcentration contours in groundwater for borings, and illustrates the

approximate location of the plume originating from the market site. LACO did not contour the

monitoring well analytical results concurrently with boring results because the longer screen intervals

in the monitoring wells may exhibit diluted results as compared with the results of the borings.

Additionally, the approximate limits of the plume originating from the BLW site are also presented

on Figure 6. Please note that the eastern and southern margins of the market site plume and the

western and southern margins of the BLW site plume are purposely vague, as noted by the dashed

lines and question marks within the isoconcentration contours. It is likely that during periods of the

greatest hydraulic head (winter), the gradient direction fluctuates. As the local hydraulic head

decreases during the summer months, the range of gradient directions likely decreases. It appears that

Page 7 – November 28, 2005

as the hydraulic gradient fluctuates toward the southwest, contamination from the BLW site impacts

the market site.

For the market site, please note that the 100,000 µg/L TPHg isoconcentration contour includes

boring B13 and boring B5. However, no groundwater samples were collected from borings B1

through B5. An estimation of what concentrations are expected in groundwater (µg/L) can be made

from existing soil (µg/g) data. This estimate is made by taking the concentration of the soil data,

dividing by porosity, and multiplying by 1000 to convert to µg/L. As noted in Table 1, the analytical

result of boring B5 for TPHg was 1,400 µg/L. Using a porosity of 0.4 (silt), the calculated

groundwater concentration is 3,500,000 µg/L. Accounting for one (conservative) order of magnitude

degradation to account for the time elapsed between the last possible release date and the present, the

expected result in groundwater would be reduced to 350,000 µg/L. Doing the same for the soil data

reported for boring B2 and B3 puts these locations within the 10,000 μg/L isoconcentration contour,

and for boring B4, within the 1,000 µg/L contour. As boring B1 is located up-gradient of the primary

release sources at the market site, LACO attributes the soil (and potential groundwater)

contamination detected in this boring to the BLW site.

Figure 7 presents an historic and current benzene groundwater isoconcentration map for the market

and BLW sites. As noted in Figure 7, the highest concentrations of benzene in groundwater were

detected at the BLW site. The 1,000 µg/L isoconcentration contour encircles the former pump island

and two of the former USTs (1000-gallon and 750-gallon). The eastern perimeter of the 100 µg/L

contour extends from the BLW site to the borings located within the old railroad grade. It is also

possible that the benzene detections reported for borings B6 and B2-01 originated from the BLW

site. Please note that only a detection of 25 µg/L of benzene was reported for boring B13, located at

the primary source at the market site. LACO asserts that it is unlikely that the benzene reported for

borings B7, B14, B1-01, B3-01, and B4-01 originated from the market site, with such elevated

concentrations of benzene noted up gradient at the BLW site. This assumption is further supported

by the information provided in Figures 8 and 9. As noted in Figure 8, the highest detections of TPHg,

benzene, and toluene detected at both sites during the September 1, 2005, sampling event were

Page 8 - November 28, 2005

reported for monitoring wells MW103, MW104, and MW3. The highest concentration of

ethylbenzene and xylenes were reported for monitoring well MW104. Figure 9 presents a TPHg

isoconcentration map in groundwater for the monitoring wells.

Fate and Transport

Laboratory data collected from points located east/southeast of the market and BLW sites have been

consistently reported as non-detect (ND) in groundwater (MW-102, MW-106, WP-8, WP-10, and

B8). Monitoring wells MW102 and MW106 have been reported as ND since sampling was initiated

in March 2001. Points located to the extreme southwest (WP-14, B5-01, and B12) were also reported

as ND. However, data points (B1-01, B10, B11, B14, B3-01, B4-01, and WP-16) located due south

of each site's USTs exhibit analyte detections. Thus, analytical results for borings located within the

old railroad grade, and potentially the results for borings located in South Railroad Avenue, may

represent detections from its respective up-gradient source, or may represent co-mingled detections.

At the very least, as the hydraulic gradient fluctuates to the southwest, co-mingled, compounded

results are reported. Alternatively, these reported concentrations represent detections solely from the

BLW site.

Trying to interpret the separation of the two plumes is difficult. A finger-print analysis (piano key

analysis) of the two fuel types is not prudent because of the ages of the fuel and release dates. The

market site had potentially two release sources separated by approximately 20 feet (pump island

dispenser and 550-gallon UST). However, the BLW site pump island dispenser and two of the three

USTs (1000-gallon and 750-gallon) are basically at the same location. The 650-gallon UST at the

BLW site was reportedly determined to be leak free and this is supported by the ND analytical results

at points in the immediate vicinity.

The analytical results of the cluster of borings WP-15, B3-01, and B14, located within the old

railroad grade are interesting. WP-15, installed in 1998 exhibited ND results for TPHg. However,

borings B3-01, installed in 2001, and B14 installed in 2005, exhibited results of 17,000 μg/L and

3,300 µg/L, respectively. One possible explanation is that, in 1998 the contaminant plume

Page 9 – November 28, 2005

originating from the BLW site had not impacted the location of WP-15. Within 3 years (2001), it is

possible that the plume had migrated south to the location of B3-01. The plume had been previously

located (in 1998) at WP-9 at a concentration of 13,000 μ g/L (same order of magnitude and similar

concentration as 17,000 $\mu g/L$ reported for boring B3-01). Within 2 more years (2005), the plume

may have degraded by one order of magnitude and/or may have migrated further (B14 - 3,300 μ g/L).

LACO finds it unlikely that the 17,000 µg/L detection noted in boring B3-01 originated from the

market site due to the concentration of TPHg reported for boring WP-9, and the data points

separating this location from the market site that exhibit an order of magnitude reduction in

concentration.

Based on the distribution of the contaminants across the site, the predominant hydraulic gradient in

the local area appears to be toward the south-southwest, with potentially only a limited component of

flow to the southeast, and/or from diffusion and dispersion of the contaminants at the plume

margin(s). Topography in the local area generally slopes to the south, with a steeper slope to the

southwest noted at the western portion of the market site.

Based on these observations, it appears that a strong southeasterly gradient is not present at the site.

As reported in LACO's Groundwater Monitoring Report; Third Quarter 2005, the hydraulic

gradient was reported at S15°E with a slope of 1 percent. However, when performing a three-point

calculation using the hydraulic head data from the same day of monitoring wells MW102, MW-104,

and MW106, the resultant hydraulic gradient is S4°E at 0.9 percent (Figure 10). This southerly

gradient may be controlled by the most southern extent of Powers Creek, which is the lowest

topographic point in the local area. Powers Creek takes a southwesterly turn underneath the historic

Schull building and passes underneath South Railroad Avenue (SRA). After the creek passes under

SRA, it crosses the 80-foot contour interval and continues to lower elevations. Groundwater in the

area of the two sites likely mimics surface topography. Attachment 4 includes three figures from

SHN reports dated March and May 2003: a site map with cross-section baselines A-A' and B-B',

cross-section A-A', and cross-section B-B'. Based on the information illustrated in cross-section B-

B', fill material is evident at the location of monitoring well MW103 and WP7 that progressively

Page 10 - November 28, 2005

thickens in an easterly trend toward Powers Creek. It appears that the original water course for

Powers Creek was located approximately 65 feet west of its present location in regards to Railroad

Avenue. No soil samples were collected from borings B8, B9, and B10, so no fill information is

available at these locations. The log for boring B11 does not indicate any fill material to be present.

The topography of the portion of Powers Creek located southeast and adjacent of both sites is higher

in elevation than the southwesterly leg, which may explain the non-detection of analytes along this

portion of Powers Creek. Hydraulic data collected from newly installed monitoring wells MW4 and

MW5 should provide more information in regards to these assumptions (information will be

provided in LACO's Groundwater Monitoring Report; Fourth Quarter 2005, to be submitted in

December 2005 or January 2006).

CONCLUSIONS

• It appears that the petroleum hydrocarbon plume originating from the BLW site is

compounding the concentrations of contaminants at the market site during seasonal gradient

direction fluctuations to the southwest.

• Based on the distribution of contaminants originating from both sites, it appears that a strong

hydraulic gradient direction to the southeast is not present at the site.

• It appears that the groundwater flow is largely toward the south-southwestern extent of

Powers Creek.

RECOMMENDATIONS

• The submittal of a brief letter workplan outlining the installation of four temporary borings in

Railroad Avenue to determine the mass flux of contaminants in soil and groundwater

migrating onto the market site from the BLW site that are compounding contaminant

concentrations at the market site. The borings will be installed up gradient of monitoring well

MW2 and between monitoring wells MW2 and MW3. Submit a brief letter report of findings

for the boring installation.

The submittal of a limited site conceptual model including updated cross-sections to support

the assumptions discussed in the Fate and Transport section of this report.

Page 11 – November 28, 2005

- The submittal of a limited CAP/feasibility study that addresses three remedial alternatives, feasibility, costs, and the selected alternative. After the CAP is approved by the HCDEH, submit a RAP addendum to the previously submitted RAP dated November 18, 2004. Modify the mass calculations in the RAP Addendum as appropriate.
- After the RAP Addendum is approved by the HCDEH, implement the selected remedial alternative, if appropriate.

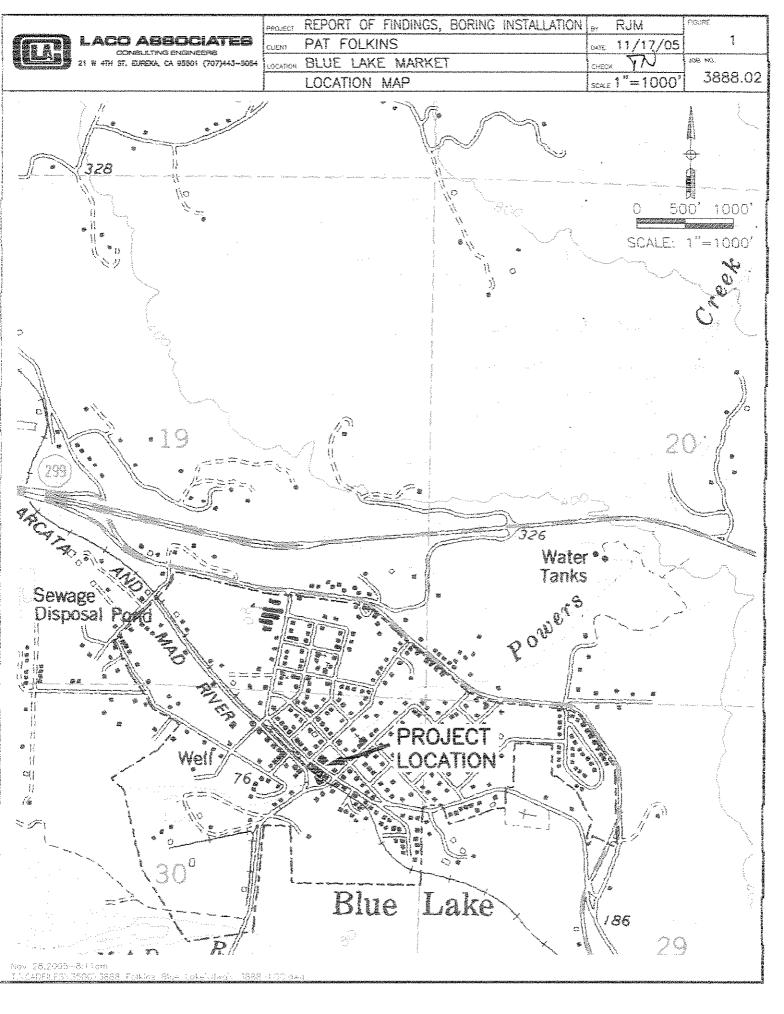
LIMITATIONS

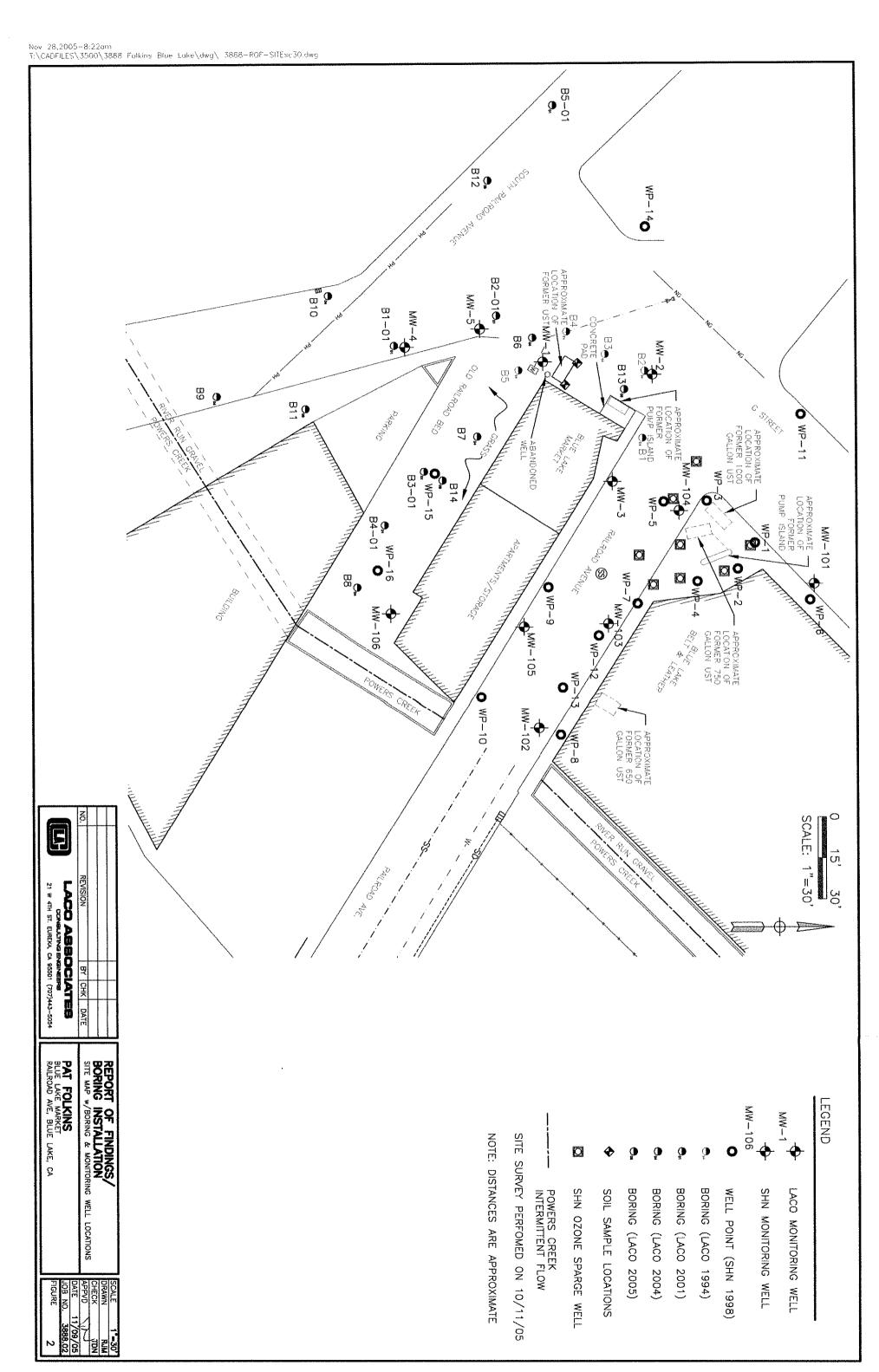
LACO has exercised a standard of care equal to that generated for this industry in our area to ensure that the information contained in this report is current and accurate. LACO disclaims any and all liability for any errors, omissions, or inaccuracies in the information and data presented in this report and/or any consequences arising therefrom, whether attributable to inadvertency or otherwise. LACO makes no representations or warranties of any kind including, but not limited to, any implied warranties with respect to the accuracy or interpretations of the data furnished. LACO assumes no responsibility of any third party reliance on the data presented, and that data generated for this report represents information gathered at that time and at the indicated locations. It should not be utilized by any third party to represent data for any other time or location. It is known that site and subsurface environmental conditions can change with time and under anthropologic influences. This report is valid solely for the purpose, site, and project described in this document. Any alteration, unauthorized distribution, or deviation from this description will invalidate this report.

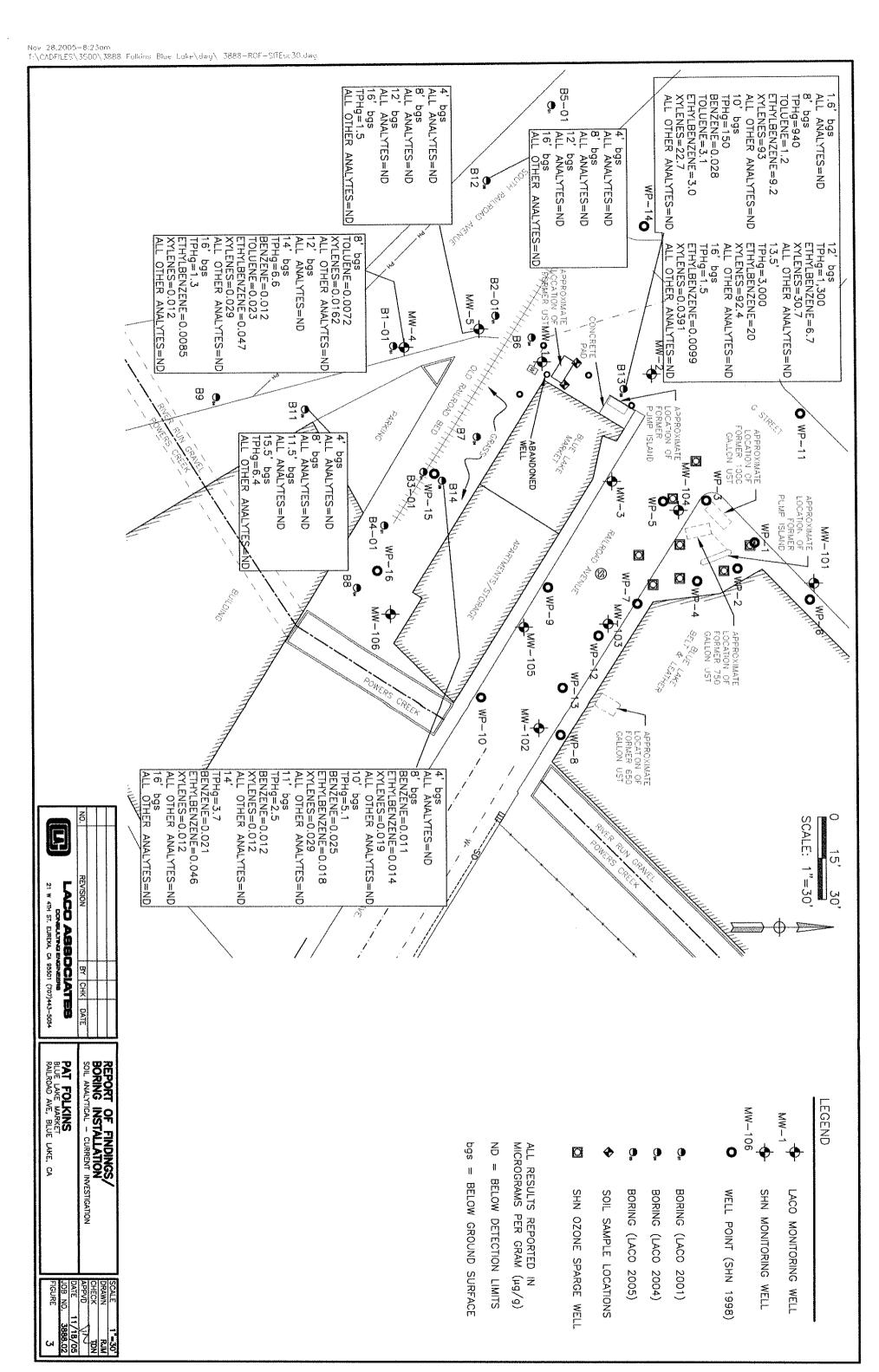
LIST OF FIGURES, TABLES, AND ATTACHMENTS

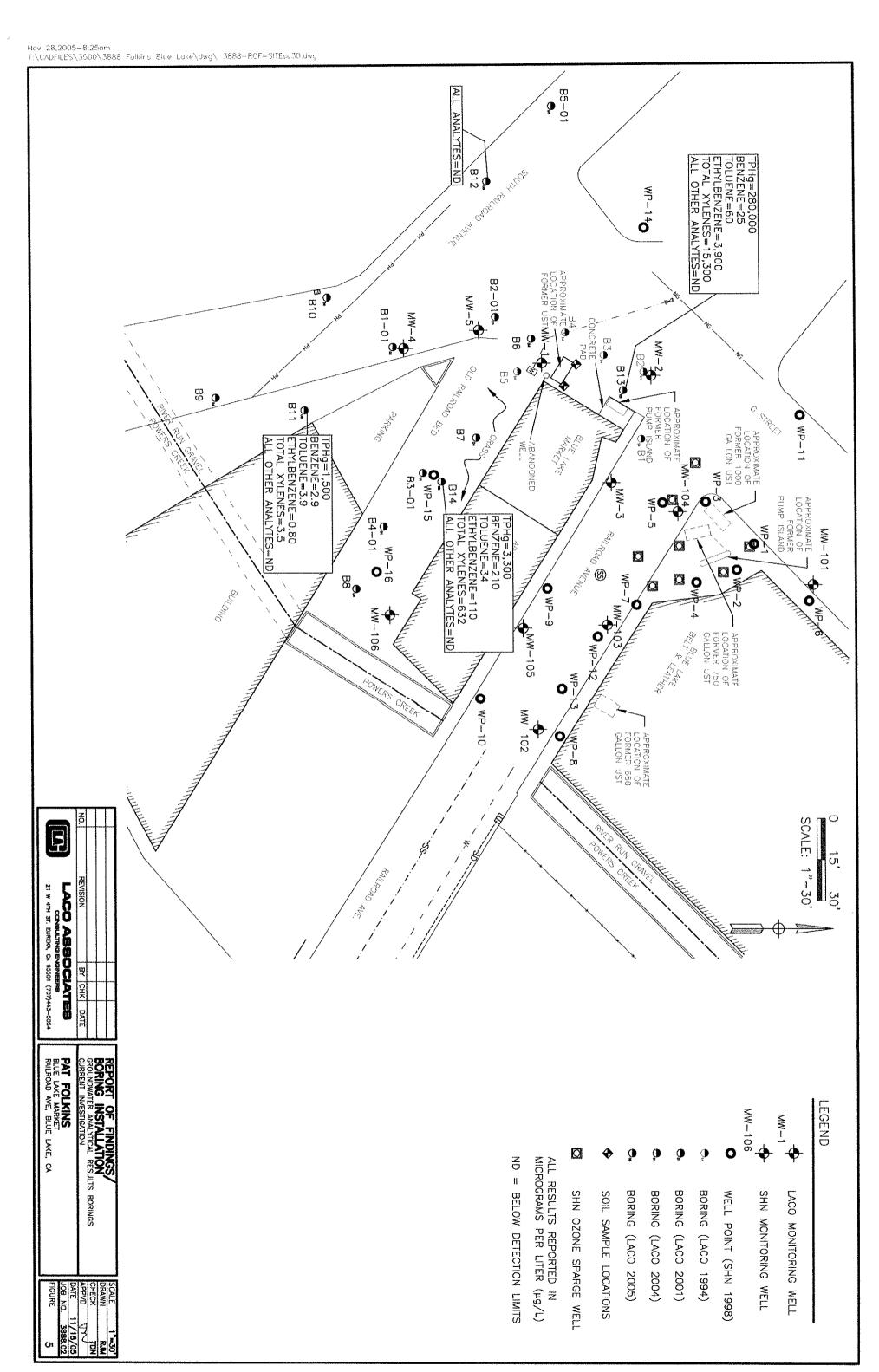
Figure 1	Location Map
Figure 2	Site Map with Boring and Monitoring Well Locations
Figure 3	Soil Analytical Results - Current Investigation
Figure 4	Current and Historic TPHg in Soil Isoconcentration Map
Figure 5	Groundwater Analytical Results (Borings) – Current Investigation
Figure 6	Current and Historic TPHg in Groundwater Isoconcentration Map
Figure 7	Current and Historic Benzene Groundwater Isoconcentration Map

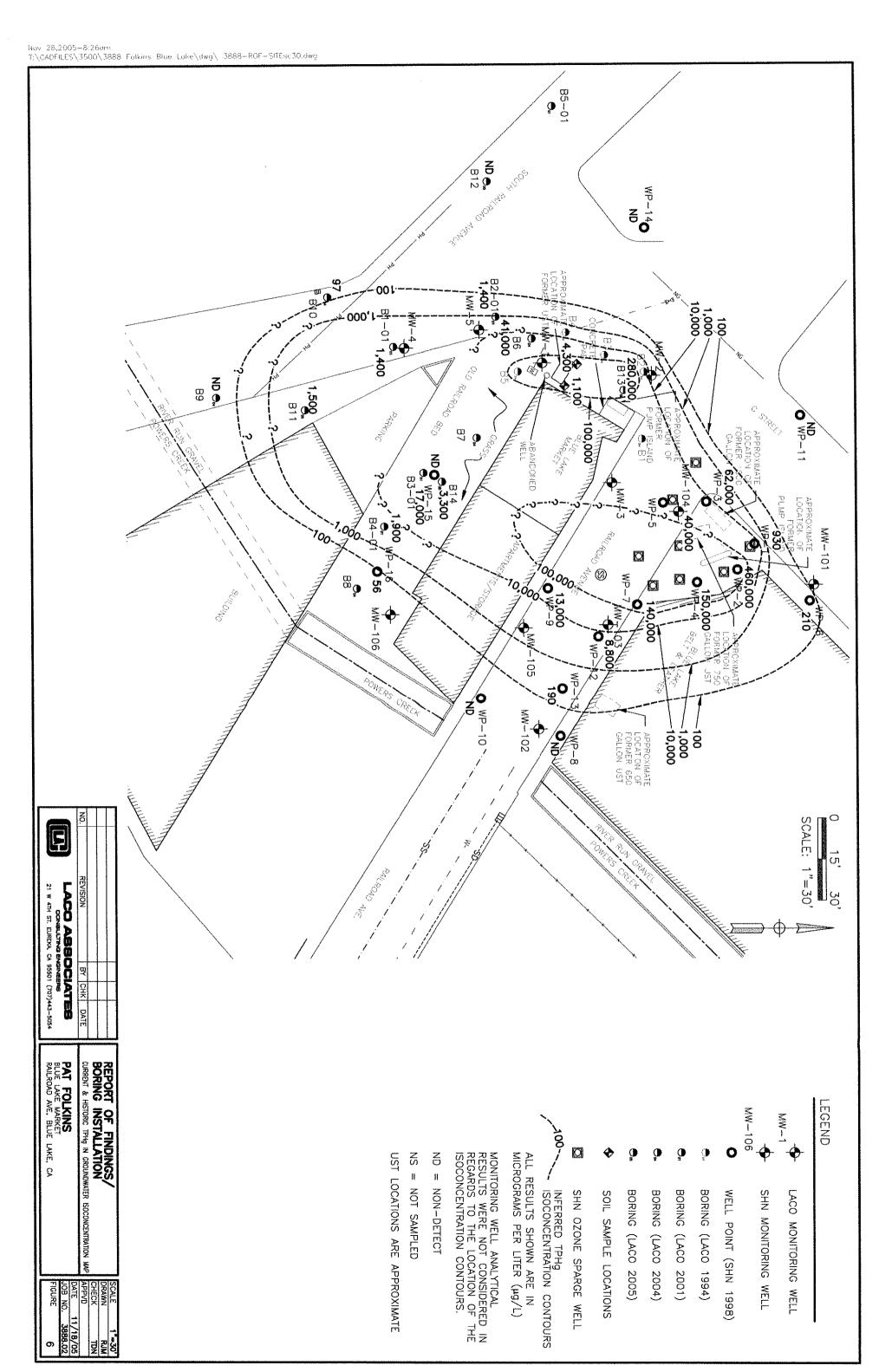
Figure 8	Monitoring Well Analyte Concentrations Map (9/01/03)
Figure 9	TPHg Isoconcentration Map in Groundwater for Monitoring Wells
Figure 10	Revised Hydraulic Gradient Map (9/01/05)
Table 1	Current and Historic Soil Laboratory Analytical Results for Soil
Table 2	Historic Soil Analytical Results – Borings; Blue Lake Belting and Leather Works
Table 3	Current and Historic Laboratory Analytical Results for Groundwater - Borings
Table 4	Historical Groundwater Analytical Results – Borings; Blue Lake Belting and Leather
	Works

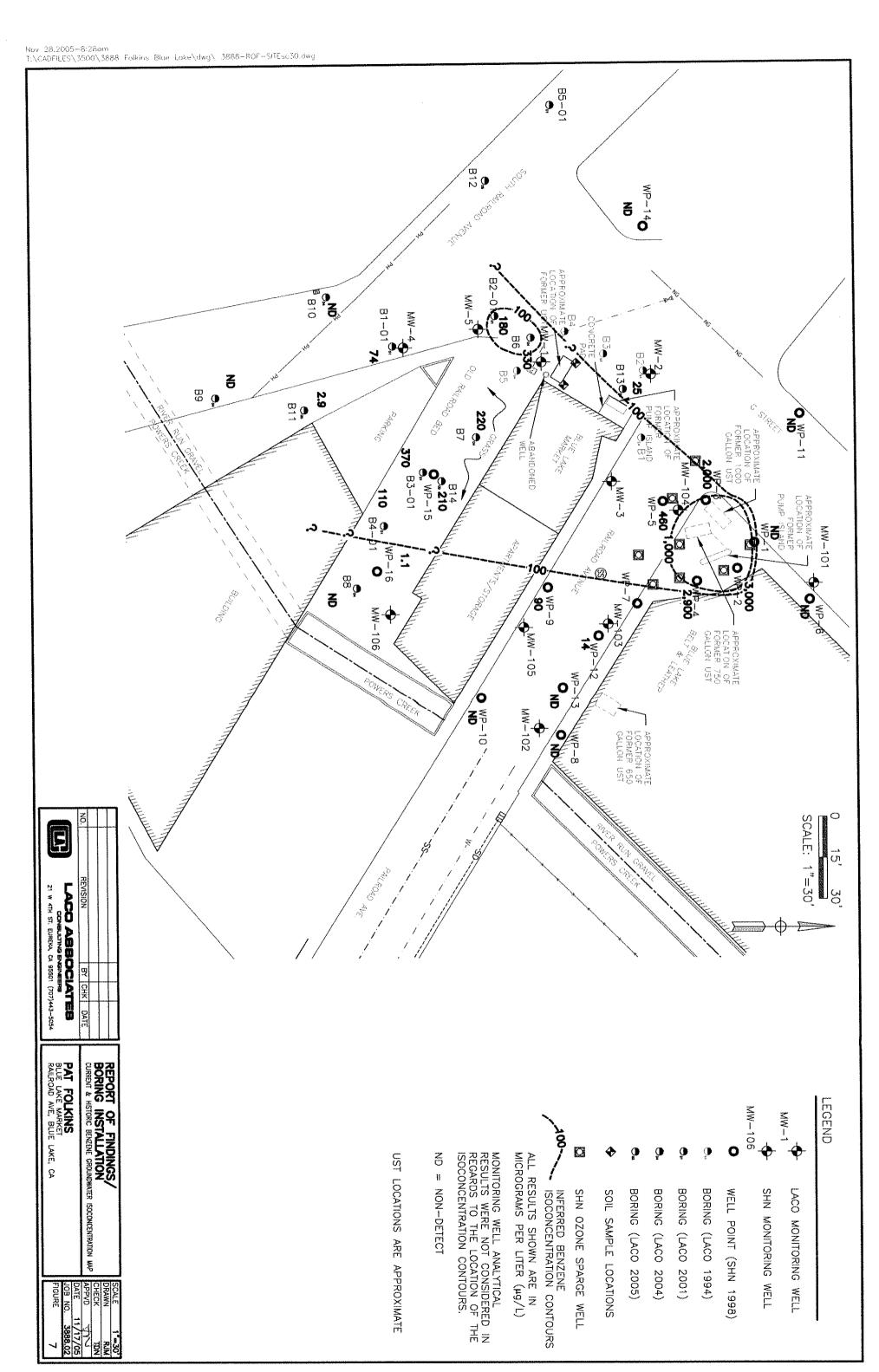

Attachment 1 Boring and Monitoring Well Installation Logs – Current Investigation

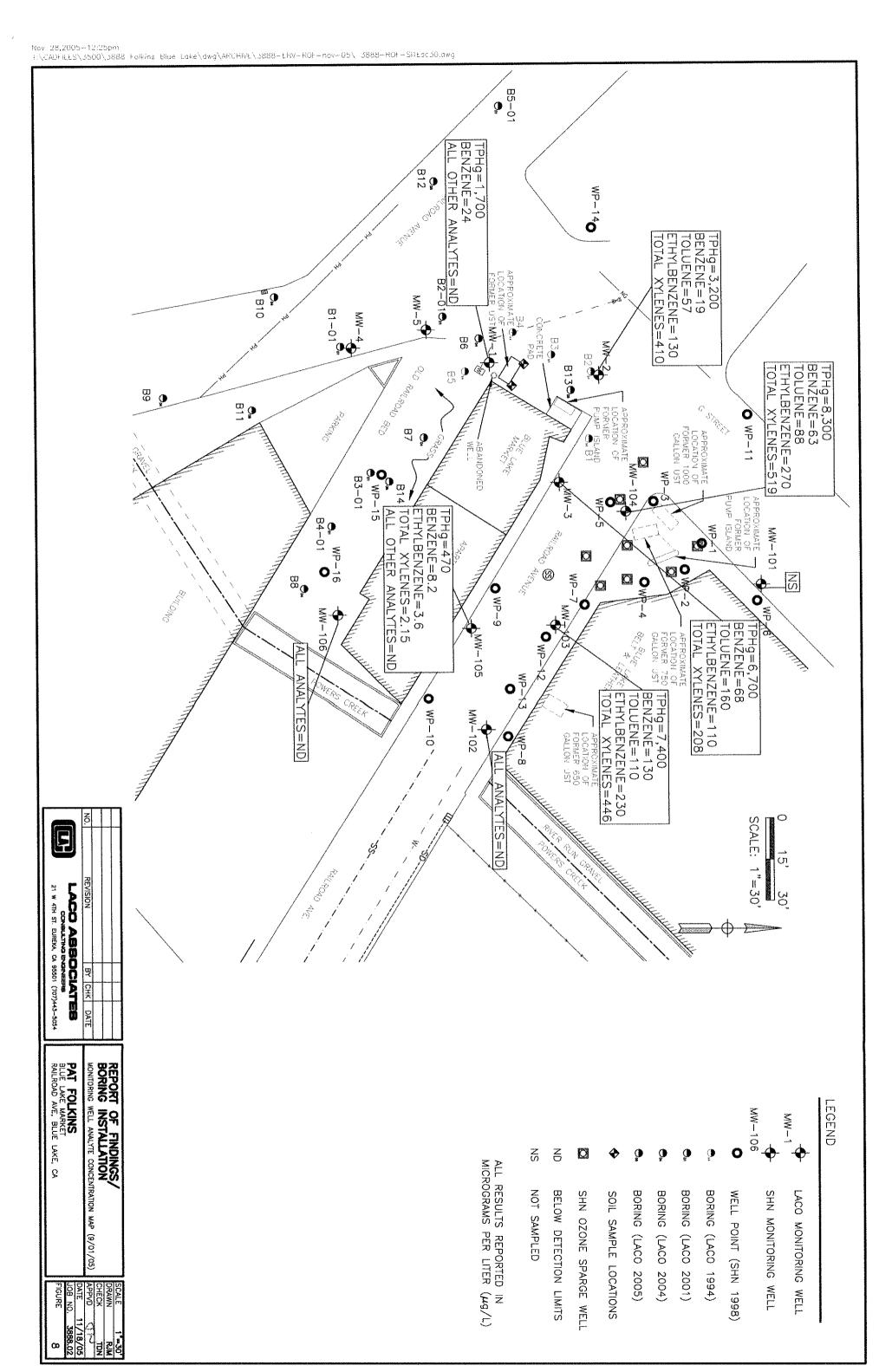

Attachment 2 Laboratory Analytical Reports

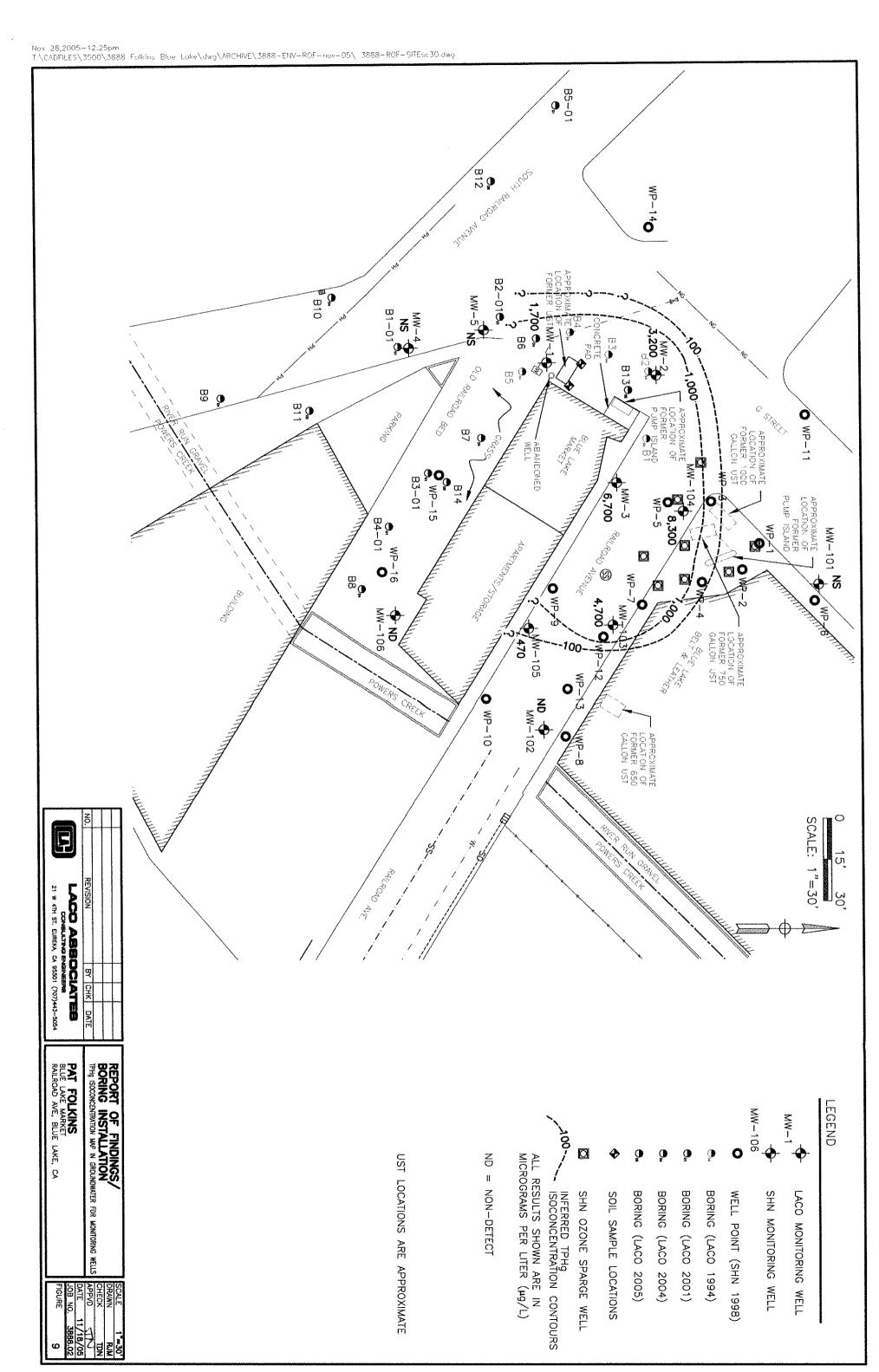

Attachment 3 Monitoring Wells MW4 and MW5 Development Records


Attachment 4 Three Figures from SHN Reports Dated March and May 2003


TDN:jg







DRAWN CHECK APPVD DATE JOB NO.

	Depth	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Organic Lead
Sample Identification	(feet bgs)	Date	(µg/g)	(μg/g)	(μg/g)	(µg/g)	(μg/g)	(µg/g)	(μg/g)
2005 Investigation							***************************************	***************************************	
3888-B11-S4	4	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B11-S8	8	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B11-S11.5	11.5	9/13/2005	1.8	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B11-S15.5	15.5	9/13/2005	6.4	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B12-S4	4	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B12-S8	8	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B12-S12	12	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B12-S16	16	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B13-S1.6	1.6	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B13-S8	8	9/13/2005	940	ND<0.5	1.2	9.2	93	ND<5.0	
3888-B13-S10	10	9/13/2005	150	0.028	3.1	3.0	22.7	ND<0.05	
3888-B13-\$12	12	9/13/2005	1,300	ND<0.5	ND<8.0	6.7	30.7	ND<5.0	
3888-B13-S13.5	13.5	9/13/2005	3,000	ND<1.0	ND<20	20	92.4	ND<5.0	
3888-B13-S16	16	9/13/2005	1.5	ND<0.005	ND<0.005	0.0099	0.0391	ND<0.05	
3888-B14-S4	4	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-B14-S8	8	9/13/2005	2.5	0.011	ND<0.040	0.014	0.019	ND<0.05	
3888-B14-S10	10	9/13/2005	5.1	0.025	ND<0.005	0.018	0.029	ND<0.05	
3888-B14-S14	14	9/13/2005	3.7	0.021	ND<0.005	0.046	0.012	ND<0.05	
3888-B14-S16	16	9/13/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
		,				•		•	
3888-MW4-S8	8	9/14/2005	ND<1.0	ND<0.005	0.0072	ND<0.005	0.0162	ND<0.05	
3888-MW4-S12	12	9/14/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-MW4-S14	14	9/14/2005	6.6	0.012	0.023	0.047	0.029	ND<0.05	
3888-MW4-S16	16	9/14/2005	1.3	ND<0.005	ND<0.005	0.0085	0.012	ND<0.05	
3888-MW5-S4	4	9/14/2005	2.8	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	****
3888-MW5-S8	8	9/14/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
3888-MW5-S12	12	9/14/2005	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	***
3888-MW5-S16	16	9/14/2005	1.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	
2004 Investigation									
B6	4	2/23/2004	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.025	an Melan
	5	2/23/2004	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.025	
	8	2/23/2004	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.025	
	12	2/23/2004	130	0.029	0.018	0.55	0.18	ND<0.025	
В7	5.5	2/23/2004	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.025	
	9	2/23/2004	2.1	0.013	ND<0.0050	ND<0.0050	ND<0.010	ND<0.025	
	13	2/23/2004	1.5	0.035	ND<0.0050	0.0099	0.011	ND<0.025	
В8		2/23/2004	ì	ples Collected	112 -0.0000	0.000	0.011	110 10.025	
В9		2/23/2004	} '	ples Collected					
B10		2/23/2004	1	ples Collected					
2001 Investigation									
B1-01	4	7/26/2001	ND < 1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.050	ND<0.5
B1-01	9	7/26/2001	ND < 1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.050	ND<0.5
B1-01	14	7/26/2001	3.7	0.0075	ND<0.03	0.027	0.022	ND<0.05	ND<0.5
DA 01		# 10 C 10 0 0 C							
B2-01	4	7/26/2001	ND < 1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.050	ND<0.5
B2-01 B2-01	9 14	7/26/2001 7/26/2001	ND < 1.0	ND <0.005	ND <0.005	ND <0.005	ND <0.005	ND <0.050	ND<0.5
B2-01	14	7/26/2001	4.7	0.02	ND<0.02	0.035	0.024	ND <0.50	ND<0.5
B3-01	4	7/26/2001	ND<1.0	ND<0.005	ND<0.005	ND<0.005	0.0053	ND<0.05	NIPL-IN E
B3-01	9	7/26/2001	2.4	ND<0.005	ND<0.003 ND<0.02	ND<0.005	0.0055	ND<0.05	ND<0.5 ND<0.5
B3-01 B3-01	14	7/26/2001	94	ND<0.003	ND<0.02 ND<0.8	0.62	2.05	ND<0.05 ND<0.05	ND<0.5
· · - #	• •				0.0	V.J#	-100	110,000	1457-013
B4-01	4	7/26/2001	2.9	0.0068	ND<0.03	0.0093	0.015	ND<0.05	ND<0.5
B4-01	9	7/26/2001	17	0.017	ND<0.2	ND<0.1	ND<0.1	ND<0.05	ND<0.5
B4-01	14	7/26/2001	62	0.12	ND<0.7	0.27	0.26	ND<0.05	ND<0.5
B5-01	4	7/27/2001	ND<1.0	ND<0.005	ND<0.005	ND<0.005	0.0061	ND<0.05	ND<0.5

TABLE 1: CURRENT AND HISTORIC LABORATORY ANALYTICAL RESULTS FOR SOIL

Blue Lake Market, 410 Railroad Avenue, Blue Lake, CA

LACO Project No. 3888.02; LOP No. 12229

	Depth	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Organic Lead
Sample Identification	(feet bgs)	Date	(μg/g)	(µg/g)	(µg/g)	(μg/g)	(μg/g)	(μg/g)	(µg/g)
B5-01	9	7/27/2001	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.5
B5-01	14	7/27/2001	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	ND<0.5
1994 Investigation									
B1	17	9/13/1994	2.5	ND<0.0050	ND<0.030	0.015	0.041		
B2	7	9/13/1994	330	ND<0.10	1.7	3.0	27		
В3	5-9	9/13/1994	770	ND<.25	1.7	3.8	46		
B4	9-14	9/13/1994	25	ND<0.0050	ND<0.040	ND<0.25	ND<0.25		
B5	8.5	9/13/1994	1,400	ND<1.0	ND<10	7.3	23		
1994 Investigation cont	inued								
MW1	5-6.5	12/23/1994	ND<1.0	ND<0.0050	0.0083	ND<0.0050	0.01		
	10-11.5	12/23/1994	6.2	0.041	ND<0.050	ND<0.050	ND<.10		
	15.16.5	12/23/1994	170	ND<0.050	ND<0.10	ND<2.0	ND<2.0		ND<5.0
MW2	10-11.5	12/23/1994	1,100	ND<0.50	16	14	102		
	15-16.5	12/23/1994	1.9	ND<0.0050	0.028	0.039	0.236		
MW3	10-11.5	12/23/1994	52	0.1	1.7	0.53	2.9		
	15-16.5	12/23/1994	140	0.1	ND<2.0	0.65	2.77		
1990 Tank Removal									
East Sample	7	2/21/1990	100	ND<0.50	ND<0.50	1.3	1.64		
West Sample	7	2/21/1990	680	ND<0.50	3.7	7.3	48		

NOTES:

TPHg - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

Additional analytes include the fuel oxygenates

bgs = below ground surface

3888-B11-S4 = project number, boring B11, soil sample collected at 4 feet bgs

B1-01 = boring B1 installed in 2001

ND = non-detect at reporting limit shown

Bold results indicate analyte detection

--- = not sampled or analyzed

All results reported in micrograms per gram = µg/g

Table 2. Historic Soil Analytical Results - Borings; Blue Lake Belting and Leather Works; 411 Railroad Avenue; LOP No. 12012

Sample Identification	Depth (feet bgs)	Sample Date	TPHg (μg/g)	Benzene (µg/g)	Toluene (μg/g)	Ethylbenzene (µg/g)	Xylenes (μg/g)	MTBE (μg/g)
1998 Investigation	1							
WP1-12	12	5/13/1998	1.5	ND<0.005	ND<0.010	ND<0.005	ND<0.010	ND<0.05
WP2-12	12	5/13/1998	1,400	5.1	49	23	138	ND<13
WP3-12	12	5/13/1998	200	0.62	ND<1.5	4.0	2.9	ND<0.5
WP4-12	12	5/13/1998	2,300	5.2	54	36	204	ND<25
WP5-12	12	5/13/1998	760	3.2	12	13	64	ND<5
WP6-12	12	5/13/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.213	ND<0.05
WP7-12	12	5/13/1998	94	0.31	0.82	1.7	9.9	ND<1.3
WP8-8	8	12/1/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
WP9-8	8	12/1/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
WP10-8	8	12/1/1998	1.5	0.021	0.24	0.057	0.33	ND<0.05
WP11-8	8	12/1/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
WP12-8	8	12/1/1998	ND<1.0	ND<0.005	0.032	0.037	0.211	ND<0.05
WP13-8	8	12/1/1998	ND<1.0	ND<0.005	0.017	0.011	0.098	ND<0.05
WP14-6	6	12/1/1998	1.1	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
WP15-6	6	12/1/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
WP16-6	6	12/1/1998	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05

NOTES:

TPHg - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

bgs = below ground surface

WP1-12 = well point 1, soil sample collected at 12 feet bgs

ND = non-detect at reporting limit shown

Bold results indicate analyte detection

--- = not sampled or analyzed

All results reported in micrograms per gram = $\mu g/g$

TABLE 3: CURRENT AND HISTORIC LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER - BORINGS

Blue Lake Market, 410 Railroad Avenue, Blue Lake, CA

LACO Project No. 3888.02; LOP No. 12229

								Additional	Organic
***	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Analytes	Lead
Boring Identification	Date	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
2005 Investigation								`	
3888-B11-W	9/13/2005	1,500	2.9	3.9	0.80	3.5	ND<1.0	ND<1-10	
3888-B12-W	9/13/2005	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0-10	
3888-B13-W	9/13/2005	280,000	25	60	3,900	15,300	ND<50	ND<50-500	
3888-B14-W	9/13/2005	3,300	210	34	110	63.2	ND<50	ND<50-500	
2004 Investigation									
B6	2/23/2004	41,000	330	44	550	180	ND<50	ND<50-100	****
B7	2/23/2004	2,500	220	25	33	25.4	ND<1.0	ND<1.0-10	
B8	2/23/2004	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0-10	
В9	2/23/2004	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0-10	***
B10	2/23/2004	97	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0-10	
							'		
2001 Investigation									
B1-01	7/27/2001	1,900	74	16	33	8.8	ND<1.0	All ND	ND<0.010
B2-01	7/27/2001	2,800	180	24	67	17.4	ND<1.0	All ND	ND<0.010
B3-01	7/27/2001	17,000	370	76	440	756	ND<1.0	All ND	ND<0.010
B4-01	7/27/2001	1,900	110	13	26	22.3	ND<1.0	Ali ND	ND<0.010
B5-01	7/27/2001	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	All ND	ND<0.010
1994 Investigation									
B1	9/13/1994	No Groundy	vater Sample	s Collected					
В2	9/13/1994	No Groundy	-						
В3	9/13/1994	No Groundy							
B4	9/13/1994	No Groundy	-						
B5	9/13/1994	No Groundy	vater Sample	s Collected					
1990 Tank Removal									
Cavity	2/21/1990	4,300	250	410	240	1,200			
Abondoned Well	2/21/1990	1,100	13	49	18	117			

NOTES:

TPHg - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

Additional analytes include the fuel oxygenates

3888-B11-W = project number, boring B11, water sample

B1-01 = boring B1 installed in 2001

ND = non-detect at reporting limit shown

Bold results indicate analyte detection

--- = not sampled or analyzed

All results reported in micrograms per liter = $\mu g/L$

Table 4: Historical Groundwater Analytical Results - Borings; Blue Lake Belting and Leather Works; 411 Railroad Avenue; LOP No. 12012

Boring Identification	Sample Date	TPHg (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Lead (μg/L)
2005 Investigatio		(r-8·)	(r·s·)	(1.8)	(*8)	(-8)	(18-7)	(18-7
WP1	5/13/1998	930	ND<8.0	ND<6.0	ND<5.0	ND<5.0	ND<5.0	1,800
WP2	5/13/1998	460,000	3,000	16,000	3,800	19,500	ND<10,000	3,200
WP3	5/13/1998	62,000	2,000	980	2,700	3,430	ND<2,500	3,900
WP4	5/13/1998	150,000	2,900	14,000	4,000	20,700	ND<10,000	870
WP5	5/13/1998	40,000	460	620	1,300	1,720	ND<1,000	1,100
WP6	5/13/1998	210	ND<0.50	1.5	1.8	3.6	ND<5.0	830
WP7	5/13/1998	140,000	2,200	7,900	5,300	26,600	ND<10,000	NA
WP8	12/1/1998	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<5.0	170
WP9	12/1/1998	13,000	90	180	190	310	160	700
WP10	12/1/1998	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<5.0	760
WP11	12/1/1998	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<5.0	340
WP12	12/1/1998	8,800	14	100	55	22	69	510
WP13	12/1/1998	190	ND<0.50	ND<0.5	ND<0.5	0.94	ND<5.0	1,000
WP14	12/1/1998	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<5.0	190
WP15	12/1/1998	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<5.0	760
WP16	12/1/1998	56	1.1	ND<0.5	ND<0.5	ND<0.5	ND<5.0	220

TPHg - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

WP1 = well point 1, water sample

ND = non-detect at reporting limit shown

Bold results indicate analyte detection

NA = not sampled or analyzed

All results reported in micrograms per liter = $\mu g/L$

Attachment 1

IVIRONMENTAL BORING LO

Boring No.

B11

PROJECT: BLUE LAKE MARKET

PROJECT NO.: 3888,02

BORING LOCATION: BRICK AREA, SCHULL PARKING LOT DATE: 9/13/2005

DRILLING METHOD: DIRECT PUSH

ELEVATION: APPROX. 85 FEET NAVD

DRILLER: LACO ASSOCIATES

LOGGED BY:

COMPLETION ¥: NA

DEPTH TO WATER: INITIAL $\frac{1}{4}$: 12.0 **COMPLETION \frac{4}{4}: SITE GEOLOGY:** UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

ELEVATION/ DEPTH	SOIL SYMBOLS, SAMPLERS AND TEST DATA	uscs	Description	P.I.D. ppm	Hanby result
0		VG	BRICK: 4-inches AGGREGATE BASE		
- 2.5		ML	SANDY SILT, Dark brown, firm-stiff, moist, Approximately 55% silt, 5% clay, 40% fine sand, minor organics; No hydrocarbon odor or staining.		**************************************
- - - 5			SILT WITH SAND; Brown, firm-stiff, moist; Approximately 80% silt, 5% clay, 15% fine sand; No hydrocarbon odor or staining.		T F F T T T T T T T T T T T T T T T T T
- - - 7.5		GM ML	SILTY GRAVEL WITH SAND; Brown, loose-medium dense, dry to moist; Approximately 50% well graded subangular to subrounded gravel, 25% well graded sand, 25% silt; No hydrocarbon odor or staining. SILT WITH SAND; Brown, soft-stiff, moist; Approximately 65%		Production Communication Commu
- 10 -		The second secon	silt, 15% clay, low plasticity, 20% fine sand; Slight hydrocarbon odor, no staining.		
- <u></u>		GM	SILTY GRAVEL WITH SAND; Blue-gray, medium dense, moist; Approximately 50% fine subangular to subrounded gravel, 25% well graded sand, 25% silt; Slight hydrocarbon odor, no staining.		
15 		ML.	SILT WITH SAND; Brown, firm-stiff, moist; Approximately 75% silt, 5% clay, low to medium plasticity, 20% fine and medium sand; No hydrocabon odor or staining. HALT AT 16 FEET BGS.		
- 17.5 - -	!				

Hand auger to 4 feet bgs. Soil samples collected at 4ft, 8ft, 11.5ft, and 15.5ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	

ΙΔ	CO	Δ	22	1	a.	Δ.	TES
,		м	33	u	u	м.	

NVIRONMENTAL BORING LO

Boring No.

PROJECT NO.: 3888.02

LOGGED BY:

B12

PROJECT: BLUE LAKE MARKET

BORING LOCATION: S SIDE OF **DATE:** 9/13/2005 DRILLING METHOD: DIRECT PUSH **ELEVATION: APPROX. 85 FEET NAVD**

DRILLER: LACO ASSOCIATES **DEPTH TO WATER:** INITIAL \(\frac{\pi}{2} \) : 14.0

COMPLETION ¥ : NA SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

SITE GEOL	SOIL SYMBOLS,	D FLUV	TAL AND FLOODPLAIN DEPOSITS		T 1
DEPTH	SAMPLERS AND TEST DATA	USCS	Description	P.I.D. ppm	Hanby result
DEPTH - 0 - 2.5 - 7.5 - 10 - 12.5	AND TEST DATA	USCS VG ML ML GP-GM MH	ASPHALT AGGREGATE BASE SANDY SILT; Dark-brown, stiff-firm, dry to moist; Approximately 55% silt, 10% clay, 35% fine and medium sand; No hydrocarbon odor or staining. SANDY SILT; Light to dark brown, stiff to firm, dry; Approximately 65% silt, 5% clay, medium plasticity, 30% fine and medium sand; No hydrocarbon odor or staining. POORLY GRADED GRAVEL WITH SILT AND SAND; Dark brown, loose, dry to moist; Approximately 50% fine and medium subangular to subrounded gravel, 40% fine and medium sand, 10% silt; No hydrocarbon odor or staining. SILT; Dark brown, stiff, moist to wet; Approximately 70% silt, 20% clay, 10% fine and medium sand; Interbedded with gravel lenses at 5.75' to 6.0'bgs and 7.75' to 8.0' bgs; No hydrocarbon odor or staining.		, - 1
- 15 - 17.5		GM ML ML	SILTY GRAVEL WITH SAND; Dark brown with mottling, loose, saturated, Approximately 50% fine, subrounded gravel, 25% fine sand, 25% silt; No hydrocarbon odor or staining. SILT; Dark brown, stiff, moist to wet; Approximately 70% silt, 20% clay, 10% fine sand; No hydrocarbon odor or staining. SILT WITH SAND; Dark gray to black, medium dense to dense, moist to wet. Approximately 60% silt, 20% clay, 10% fine sand, 10% fine and medium, subangular to subrounded gravel; Slight organic odor; no hydrocarbon staining. HALT AT 16 FEET BGS		
_		- 7	describerted at 16, 96, 12 56, and 166 have such anound not	ī	***************************************

Hand auger to 4 feet bgs. Soil samples collected at 4ft, 8ft, 13.5ft, and 16ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	

Boring No.

B13

PROJECT: BLUE LAKE MARKET

BORING LOCATION: 8 FEET SW OF MW2

DRILLING METHOD: DIRECT PUSH

DRILLER: LACO ASSOCIATES

DEPTH TO WATER: INITIAL \(\frac{\pi}{2} \) : 12.0

PROJECT NO.: 3888,02 **DATE:** 9/13/2005

ELEVATION: APPROX. 90 FEET NAVD

LOGGED BY:

COMPLETION ¥ : NA SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

	SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS				
ELEVATION/ DEPTH	SOIL SYMBOLS, SAMPLERS AND TEST DATA	uscs	Description	P.I.D. ppm	Hanby result
- O		VG	ASPHALT AGGREGATE BASE		
- 2.5		ML	SANDY SILT; Dark brown, stiff to hard, moist; Approximately 55% silt, 10% clay, medium to high plasticity, 35% fine sand; Slight hydrocarbon odor, no staining.		
- 7.5 - - - - 10		GM ML	SILTY GRAVEL WITH SAND; Dark gray to brown, loose, moist to wet; Approximately 50% fine and medium gravel, 30% fine sand, 20% silt; Strong hydrocarbon odor, no staining. SANDY SILT; Dark brown with gray streaking, stiff to hard, moist to wet; Approximately 60% silt, 10% clay, medium to high plasticity, 30% fine sand; Medium hydrocarbon odor, no staining.	1534	
- <u>-</u> 12.5		GM	SILTY GRAVEL WITH SAND; Dark gray to brown, loose, moist to wet; Approximatley 50% fine and medium gravel, 30% fine sand, 20% silt; Strong hydrocarbon odor, no staining.	425-801	
- 15 		SM	SILTY SAND WITH GRAVEL; Dark gray to brown, loose to medium dense, moist to wet; Approximatley 45% well graded sand, 30% well graded gravel, 20% silt, 5% clay. Strong hydrocarbon odor, no staining. HALT AT 16 FEET BGS.	87	
17.5		.7			

Hand auger to 4 feet bgs. Soil samples collected at 1.6ft, 8ft, 10ft, 12ft, and 16ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	
--------	--

IVIRONMENTAL BORING LO

Boring No.

B14

PROJECT: BLUE LAKE MARKET

BORING LOCATION: 60 FEET SE OF MW1

DRILLING METHOD: DIRECT PUSH

DRILLER: LACO ASSOCIATES

DEPTH TO WATER: INITIAL \(\frac{1}{2} \) : 13.0

LOGGED BY: COMPLETION ¥: NA

PROJECT NO.: 3888.02

ELEVATION: APPROX. 88 FEET NAVD

DATE: 9/13/2005

SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

DEPTH	SOIL SYMBOLS, SAMPLERS AND TEST DATA	uscs	Description	P.I.D. ppm	Hanby result
- 2.5		GM	SILTY SAND WITH GRAVEL; Light to dark brown, loose, dry to moist; Approximately 60% well graded sand, 25% fine gravel, 15% silt; No hydrocarbon odor or staining.		- The state of the
7.5		ML	SANDY SILT; Dark brown, hard, wet; Approximately 55% silt, 15% clay medium to high plasticity, 30% fine sand; Gravel lens at 4.5'to 4.8' bgs; Slight hydrocarbon odor at approximately 8' bgs, no staining.	40	T to the Continuation of t
10 		GM SM ML	SILTY GRAVEL WITH SAND; Dark gray to brown, medium dense to dense, moist to wet; Approximately 45% fine and medium subangular to subrounded gravel, 25% fine and medium sand, 25% silt, 5% clay; Medium hydocarbon odor, no staining.	214	Action and the second s
- 12.5 - -		ML	SILTY SAND; Dark gray, medium dense to dense, moist to wet; Approximately 60% fine and medium sand, 30% silt, 10% clay; Strong hydrocarbon odor, no staining. SANDY SILT; Dark brown, stiff to hard, moist to wet; Approximately 55% silt, 15% clay medium to high plasticity, 30% fine sand; Slight hydrocarbon odor, no staining. GRAVELY SILT WITH SAND; Dark gray to brown, medium dense	302	THE ATTERNATIONS AND THE ATTER
— 15 - - - 17.5		ML	to dense, moist to wet; Approximately 40% silt, 5% clay, 30% fine and medium subangular to subrounded gravel, 25% fine and medium sand; Slight hydrocarbon odor, no staining. SANDY SILT; Dark brown, stiff to hard, moist to wet; Approximately 55% silt, 15% clay medium to high plasticity, 30% fine and medium sand; 1.5 inch thick gravel layer at 14.9 feet bgs. Slight hydrocarbon odor, no staining. HALT AT 16 FEET BGS.		

Hand auger to 4 feet bgs. Soil samples collected at 4ft, 8ft, 11ft, 14ft, and 16ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	
--------	--

MONITORING WELL LOG

Well No.

MW4

PROJECT: BLUE LAKE MARKET

BORING LOCATION: 50 FEET SOUTH OF MW1

DRILLING METHOD: DIRECT PUSH

DRILLER: LACO ASSOCIATES

DEPTH TO WATER: INITIAL \(\frac{\pi}{2}\): 12.0

WELL CASING: 0'-10' BGS

PROJECT NO.: 3888.02

DATE: 9/14/2005

ELEVATION: APPROX. 85 FEET NAVD

LOGGED BY:

DEPTH TO WATER: INITIAL \(\frac{\pi}{2} : 12.0\)

SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

WELL SCREEN AND INTERVAL: 10'-15' BGS

SEAL AND INTERVAL: 0'-9' BGS SAND PACK AND INTERVAL: 9'-15' BGS							
	DIL SYMBOLS, SAMPLERS ID TEST DATA	USCS	Description	P.I.D ppm	Hanby Result	Well Construction Diagram	
-		VG	ASPHALT AGGREGATE BASE		Occupation (Control of Control of		
2.5 - - 5		GM	SILTY GRAVEL WITH SAND; Dark gray to brown, loose to medium dense, dry to moist; Approximately 60% fine and medium gravel, 15% fine sand, 25% silt, <10% organics at 6.5' to 7' bgs; No hydrocarbon odor or staining.				
- -7.5		ML	SILT WITH SAND; Dark brown with mottling, stiff to hard, moist to wet; Approximately 65% silt, 15% clay high plasticity, 20% fine sand; No hydrocarbon odor or staining.	0			
— 10 - -		SM	SILTY SAND; Dark gray, medium dense, wet to saturated; Approximately 60% fine sand, 35% silt, 5% clay, No hydrocarbon odor or staining.	0			
- 12.5		GM	SILTY GRAVEL WITH SAND; Dark gray, loose, wet to saturated; Approximately 50% fine and medium gravel, 25% fine and medium sand, 25% silt; <5% organics at 13.5' to 14' bgs; No hydrocarbon or staining.	0			
15 		SM	SILTY SAND WITH GRAVEL; Dark brown to gray, loose to medium dense, moist to wet; Approximately 40% fine and medium sand, 25% fine and medium gravel, 30% silt, 5% clay; No hydrocarbon odor or staining.	0			
- - -	monomorphic de la constanta de		HALT AT 16 FEET BGS	0			
- 17.5				4			

Hand auger to 4 feet bgs. Soil samples collected at 8ft, 12ft, 14ft, and 16ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	_

MONITORING WELL LOG

Well No.

MW5

PROJECT: BLUE LAKE MARKET

BORING LOCATION: 30 FEET SOUTH OF MW1

DRILLING METHOD: DIRECT PUSH DRILLER: LACO ASSOCIATES

DEPTH TO WATER: INITIAL $\frac{1}{2}$: 8.0

WELL CASING: 0'-10' BGS SEAL AND INTERVAL: 0'-9' BGS **PROJECT NO.:** 3888.02

DATE: 9/14/2005

ELEVATION: APPROX. 85 FEET NAVD

LOGGED BY:

COMPLETION \ \ : N/A

SITE GEOLOGY: UPLIFTED FLUVIAL AND FLOODPLAIN DEPOSITS

WELL SCREEN AND INTERVAL: 10'-15' BGS SAND PACK AND INTERVAL: 9'-15' BGS

SEAL AND	INTERVAL: 0'-9'	BGS	SAND PACK AND INTERVAL: 9'-15' B	D PACK AND INTERVAL: 9'-15' BGS				
ELEVATION/ DEPTH	SOIL SYMBOLS, SAMPLERS AND TEST DATA	USCS	Description	P.I.D ppm	Hanby Result	Well Construction Diagram		
DEPTH O	SOIL SYMBOLS,			P.I.D		1 1		
— 9 — — 12		SM SM SM	Approximately 50% fine sand, 40% silt, 10% clay; No hydrocarbon odor or staining. SANDY SILT; Dark brown, stiff to hard, moist to wet; Approximately 40% silt, 30% clay, high plasticity, 30% fine sand; No hydrocarbon odor or staining. SILTY SAND WITH GRAVEL; Dark gray, medium dense, wet to saturated; Approximately 50% fine and medium sand, 25% fine gravel, 20% silt, 5% clay; Slight hydrocarbon odor, no staining. SILTY SAND; Dark brown, dense, moist to wet; Approximately 50% fine and medium sand, 40% silt, 10% clay;	3				
- 15 - - 18 21		ML. GM	No hydrocarbon odor or staining. SILTY SAND; Dark gray, loose, saturated; Approximately 65% well graded sand, 5% fine gravel, 25% silt, 5% clay; Slight hydrocarbon odor, no staining. SANDY SILT WITH GRAVEL; Dark gray to brown, firm to stiff, wet to saturated; Approximately 50% silt, 10% clay, 20% well graded sand, 20% fine and medium gravel; <5% organics at 13'-13.5' bgs; No hydrocarbon odor or staining. SILTY GRAVEL WITH SAND; Dark gray to brown, loose, wet to saturated; Approximately 45% fine and medium gravel, 40% fine and medium sand, 15% silt; Slight hydrocarbon odor, no staining. HALT AT 16 FEET BGS	0				

Hand auger to 4 feet bgs. Soil samples collected at 4ft, 8ft, 12ft, and 16ft bgs; grab groundwater samples collected with dedicated PVC tubing equipped with a check valve.

Figure	
--------	--

Attachment 2

NORTH COAST LABORATORIES LTD.

September 27, 2005

BY: <u>JG</u>

Pvt. cust. paying on pickup

DRG

ION

Order No.: 0509275 Invoice No.: 53092

PO No.:

ELAP No. 1247-Expires July 2006

Attn: Pat Folkins

RE: 3888.01, Blue Lake Market

SAMPLE IDENTIFICATION

	Client Service Description
Fraction	Client Sample Description
01A	3888-B11-S4
02A	3888-B11-S8
03A	3888-B11-S11.5
04A	3888-B11-S15.5
05A	3888-B12-S4
A30	3888-B12-S8
07.A	3888-B12-S12
A.80	3888-B12-S16
09.A	3888-B13-S1.6
10A	3888-B13-S8
11A	3888-B13-S10
12A	3888-B13-S12
13.A	3888-B13-S13.5
14A	3888-B13-S16
15A	3888-B14-S4
16A	3888-B14-S8
17A	3888-B14-S10
18A	3888-B14-S11
19A	3888-B14-S14
20A	3888-B14-S16
21A	3888-B11-W
22A	3888-B12-W
23A	3888-B13-W
24A	3888-B14-W

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

North Coast Laboratories, Ltd.

CLIENT:

Pvt. cust. paying on pickup

Project:

3888.01, Blue Lake Market

Lab Order:

0509275

CASE NARRATIVE

Date: 28-Sep-05

TPH as Gasoline - Soil:

Samples 3888-B11-S11.5 and 3888-B11-S15.5 do not present a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.

Samples 3888-B13-S8, 3888-B13-S10, 3888-B13-S12, 3888-B13-S13.5 and 3888-B13-S16 appear to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline range.

The gasoline values for samples 3888-B14-S8, 3888-B14-S10, 3888-B14-S11 and 3888-B14-S14 include the reported gasoline components in addition to other peaks in the gasoline range.

BTEX - Soil:

Some reporting limits were raised for samples 3888-B11-S11.5, 3888-B11-S15.5, 3888-B14-S8, 3888-B14-S10, 3888-B14-S11 and 3888-B14-S14 due to matrix interference.

Samples 3888-B13-S12 and 3888-B13-S13.5 were diluted and the reporting limits were raised additionally due to matrix interference.

Samples 3888-B13-S8, 3888-B13-S12 and 3888-B13-S13.5 were reported as ND with a dilution due to matrix interference.

Gasoline Components/Additives - Water:

Samples 3888-B11-W, 3888-B13-W and 3888-B14-W appear to be similar to gasoline but certain peak ratios are not that of a fresh gasoline standard. The reported results represent the amount of material in the gasoline range.

Sample 3888-B13-W was reported as ND with a dilution due to matrix interference.

27-Sep-05

Client Sample ID: 3888-B11-S4

WorkOrder: 0509275

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-01A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

10011.000						
Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/23/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
m,p-Xylene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
o-Xylene	ND	0.0050	hā/ā	1.0	9/23/05	9/23/05
Surrogate: Cis-1,2-Dichloroethylene	103	71.8-135	% Rec	1.0	9/23/05	9/23/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	µg/9	1.0	9/23/05	9/23/05

Client Sample ID: 3888-B11-S8

Lab ID: 0509275-02A

Received: 9/15/05

Collected: 9/13/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	Units	$\overline{ extbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/23/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.0050	µg/g	1.0	9/23/05	9/23/05
m.p-XvIene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
o-Xvlene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Surrogate: Cis-1.2-Dichloroethylene	102	71.8-135	% Rec	1.0	9/23/05	9/23/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/23/05	9/23/05

27-Sep-05

WorkOrder: 0509275

ANALYTICAL REPORT

Client Sample ID: 3888-B11-S11.5

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-03A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

X 000 1 (122340)						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/23/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.020	μg/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.010	μg/g	1.0	9/23/05	9/23/05
m,p-Xylene	ND	0.010	μg/g	1.0	9/23/05	9/23/05
o-Xvlene	ND	0.010	μg/g	1.0	9/23/05	9/23/05
Surrogate: Cis-1.2-Dichloroethylene	96.6	71.8-135	% Rec	1.0	9/23/05	9/23/05

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	DF	Extracted	Analyzed
TPHC Gas (C6-C14)	1.8	1.0	µg/g	1.0	9/23/05	9/23/05

Client Sample ID: 3888-B11-S15.5

Lab ID: 0509275-04A

Received: 9/15/05 **Collected:** 9/13/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	µg/g	1.0	9/23/05	9/23/05
Benzene	ŅD	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.080	ug/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.020	µg/g	1.0	9/23/05	9/23/05
m,p-Xylene	ND	0.030	μg/g	1.0	9/23/05	9/23/05
o-Xviene	ND	0.010	μg/g	1.0	9/23/05	9/23/05
Surrogate: Cis-1,2-Dichloroethylene	97.8	71.8-135	% Rec	1.0	9/23/05	9/23/05

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	6.4	1.0	μg/g	1.0	9/23/05	9/23/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B12-S4

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-05A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Para <u>meter</u>	Result	<u>Limit</u>	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/23/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
m,p-Xylene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
o-Xylene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Surrogate: Cis-1,2-Dichloroethylene	103	71.8-135	% Rec	1.0	9/23/05	9/23/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	Units	<u>DF</u>	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	h8/a	1.0	9/23/05	9/23/05

Client Sample ID: 3888-B12-S8

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-06A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	Limit	Units	<u>DF</u>	Extracted	Analyzed
MTBE	ŃD	0.050	µg/g	1.0	9/23/05	9/23/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/23/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
m.p-Xylene	NĎ	0.0050	μg/g	1.0	9/23/05	9/23/05
c-Xvlene	ND	0.0050	μg/g	1.0	9/23/05	9/23/05
Surrogate: Cis-1,2-Dichloroethylene	98.8	71.8-135	% Rec	1.0	9/23/05	9/23/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/23/05	9/23/05

27-Sep-05

WorkOrder: 0509275

ANALYTICAL REPORT

Client Sample ID: 3888-B12-S12

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-07A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	hg/g	1.0	9/23/05	9/24/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
m,p-Xylene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
o-Xylene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	99.6	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/23/05	9/24/05

Client Sample ID: 3888-B12-S16

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-08A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	µg/g	- 1.0	9/23/05	9/24/05
m,p-Xylene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
o-Xylene	ND	0.0050	hā/ā	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	99.5	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B13-S1.6

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-09A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND ND	0.050	μg/g	1.0 '	9/23/05	9/24/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
m.p-Xviene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xvlene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1.2-Dichloroethylene	98.4	71.8-135	% Rec	1.0	9/23/05	9/24/05

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\underline{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	μg/g	1.0	9/23/05	9/24/05

Client Sample ID: 3888-B13-S8

Lab ID: 0509275-10A

Received: 9/15/05

Collected: 9/13/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	Limit	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	5.0	μg/g	100	9/23/05	9/24/05
Benzene	ND	0.50	μg/g	100	9/23/05	9/24/05
Toluene	1.2	0.50	µg/g	100	9/23/05	9/24/05
Ethylbenzene	9.2	0.50	μg/g	100	9/23/05	9/24/05
m,p-Xylene	67	5.0	μg/g	1,000	9/23/05	9/26/05
o-Xylene	26	5.0	μg/g	1,000	9/23/05	9/26/05
Surrogate: Cis-1,2-Dichloroethylene	93.6	71.8-135	% Rec	100	9/23/05	9/24/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	940	100	μg/g	100	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B13-S10

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-11A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{ ext{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Benzene	0.028	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	3.1	0.50	μg/g	100	9/23/05	9/26/05
Ethylbenzene	3.0	0.50	μg/g	100	9/23/05	9/26/05
m.p-Xylene	16	0.50	μg/g	100	9/23/05	9/26/05
o-Xylene	6.7	0.50	μg/g	100	9/23/05	9/26/05
Surrogate: Cis-1 2-Dichloroethylene	104	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	Units	<u>DF</u>	Extracted	Analyzed
TPHC Gas (C6-C14)	150	10	hã/ā	10	9/23/05	9/26/05

Client Sample ID: 3888-B13-S12

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-12A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed
MTBE	ND	5.0	μg/g	100	9/23/05	9/24/05
Benzene	ND	0.50	μg/g	100	9/23/05	9/24/05
Toluene	ND	8.0	μg/g	100	9/23/05	9/24/05
Ethylbenzene	6.7	0.50	µg/g	100	9/23/05	9/24/05
m.p-Xylene	27	0.50	μg/g	100	9/23/05	9/24/05
o-Xvlene	3.7	0.50	μg/g	100	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	94.2	71.8-135	% Rec	100	9/23/05	9/24/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\mathbf{\overline{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	1,300	100	µg/g	100	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Client Sample ID: 3888-B13-S13.5 Lab ID: 0509275-13A.

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	\mathbf{DF}	Extracted	Analyzed
MTBE	ND	5.0	µg/g	100	9/23/05	9/24/05
Benzene	ND	1.0	μg/g	100	9/23/05	9/24/05
Toluene	ND	20	μg/g	1,000	9/23/05	9/26/05
Ethylbenzene	20	5.0	μg/g	1,000	9/23/05	9/26/05
m,p-Xylene	83	5.0	μg/g	1,000	9/23/05	9/26/05
o-Xylene	9.4	5.0	µg/g	1,000	9/23/05	9/26/05
Surrogate: Cis-1,2-Dichloroethylene	96.5	71.8-135	% Rec	100	9/23/05	9/24/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	<u>Units</u>	DF	Extracted	Analyzed
TPHC Gas (C6-C14)	3,000	100	μg/g	100	9/23/05	9/24/05

Client Sample ID: 3888-B13-S16

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-14A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	µg/g	1.0	9/23/05	9/24/05
Benzene	ND	0.0050	на/а	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Ethylbenzene	0.0099	0.0050	μg/g	1.0	9/23/05	9/24/05
m,p-Xylene	0.030	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xylene	0.0091	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1.2-Dichlorgethylene	92.8	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	Analyzed
TPHC Gas (C6-C14)	1.5	1.0	μg/g	1.0	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B14-S4

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-15A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

T COC I (MILIO)						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Benzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
m.p-Xylene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xviene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	96.7	71.8-135	% Rec	1.0	9/23/05	9/24/05

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B Test Name: TPH as Gasoline

<u>Lim</u>it DF Extracted Result **Parameter** 1.0 9/23/05 9/24/05 µg/g TPHC Gas (C6-C14) ND 1.0

Client Sample ID: 3888-B14-S8

Lab ID: 0509275-16A

Received: 9/15/05

Collected: 9/13/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	µg/g	1.0	9/23/05	9/24/05
Benzene	0.011	0.0050	µg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.040	μg/g	1.0	9/23/05	9/24/05
Ethylbenzene	0.014	0.0050	μg/g	1.0	9/23/05	9/24/05
m.p-Xylene	0.019	0.0050	µg/g	1.0	9/23/05	9/24/05
o-Xviene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	95.1	71.8-135	% Rec	. 1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	2.5	1.0	μg/g	1.0	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

ANALYTICAL REPORT

Client Sample ID: 3888-B14-S10

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-17A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Benzene	0.025	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Ethylbenzene	0.018	0.0050	μg/g	1.0	9/23/05	9/24/05
m,p-Xylene	0.029	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xylene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	101	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	Units	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	5.1	1.0	µg/g	1.0	9/23/05	9/24/05

Client Sample ID: 3888-B14-S11

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-18A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
МТВЕ	ND	0.050	µg/g	1.0	9/23/05	9/24/05
Benzene	0.012	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.040	hā/ā	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
m,p-Xylene	0.012	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xylene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1,2-Dichloroethylene	98.2	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u> .	\mathbf{DF}	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	2.5	1.0	μg/g	1.0	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B14-S14

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-19A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

200121222007						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/23/05	9/24/05
Benzene	0.021	0.0050	μg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.050	µg/g	1.0	9/23/05	9/24/05
Ethylbenzene	0.046	0.0050	μg/g	1.0	9/23/05	9/24/05
m.p-Xylene	0.012	0.0050	μg/g	1.0	9/23/05	9/24/05
o-Xvlene	ND	0.010	µg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1.2-Dichloroethylene	98.8	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	3.7	1.0	µg/g	1.0	9/23/05	9/24/05

Client Sample ID: 3888-B14-S16

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-20A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	Limit	Units	\mathbf{DF}	Extracted	Analyzed
MTBE	ND	0.050	µg/g	1.0	9/23/05	9/24/05
Benzene	ND	0.0050	pg/g	1.0	9/23/05	9/24/05
Toluene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
Ethylbenzene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
m,p-Xylene	ND	0.0050	µg/g	1.0	9/23/05	9/24/05
o-Xviene	ND	0.0050	μg/g	1.0	9/23/05	9/24/05
Surrogate: Cis-1 2-Dichlorpethylene	88.1	71.8-135	% Rec	1.0	9/23/05	9/24/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/23/05	9/24/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B11-W

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-21A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		9/23/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		9/23/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		9/23/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0	*	9/23/05
Benzene	2.9	0.50	μg/L	1.0		9/23/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		9/23/05
Toluene	3.9	0.50	hg/r	1.0		9/23/05
Ethylbenzene	0.80	0.50	μg/L	1.0		9/23/05
m,p-Xylene	3.5	0.50	μg/Ľ	1.0		9/23/05
o-Xviene	ND	0.50	μg/L	1.0	•	9/23/05
Surrogate: 1,4-Dichlorobenzene-d4	90.2	80.8-139	% Rec	1.0		9/23/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gasoline	1,500	50	μg/L	1.0		9/23/05

Client Sample ID: 3888-B12-W

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-22A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	Units	$\mathbf{\underline{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		9/23/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		9/23/05
Di-isopropyl ether (DIPE)	ND	1.0	μg/L	1.0		9/23/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	µg/L	1.0		9/23/05
Benzene	ND	0.50	μg/L	1.0		9/23/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		9/23/05
Toluene	ND	0.50	μg/L	1.0		9/23/05
Ethylbenzene	ND	0.50	μg/L	1.0		9/23/05
m,p-Xylene	ND	0.50	μg/L	1.0		9/23/05
o-Xviene	ND	0.50	µg/L	1.0		9/23/05
Surrogate: 1.4-Dichlorobenzene-d4	92.6	80.8-139	% Rec	1.0		9/23/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	ND	50	μg/L	1.0		9/23/05

27-Sep-05

WorkOrder: 0509275

Client Sample ID: 3888-B13-W

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-23A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
Methyl tert-butyl ether (MTBE)	ND	50	μ g /L	50		9/22/05
Tert-butyl alcohol (TBA)	ND	500	μg/L	50		9/22/05
Di-isopropyl ether (DIPE)	ND	50	μg/L	50		9/22/05
Ethyl tert-butyl ether (ETBE)	ND	50	μg/L	50		9/22/05
Benzene	25	25	μg/L	50		9/22/05
Tert-amyl methyl ether (TAME)	ND	50	μg/L	50		9/22/05
Toluene	60	25	μg/L	50		9/22/05
Ethylbenzene	3,900	50	μg/L	100		9/22/05
m.p-Xylene	13.000	500	μg/L	1,000		9/22/05
1 •	2,300	50	μg/L	100		9/22/05
o-Xylene Surrogate: 1,4-Dichlorobenzene-d4	100	80.8-139	% Rec	50		9/22/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	280,000	5,000	μg/L	100		9/22/05

Client Sample ID: 3888-B14-W

Received: 9/15/05

Collected: 9/13/05 0:00

Lab ID: 0509275-24A

Test Name: Gasoline Components/Additives

Reference: LUFT/EPA 8260B Modified

Lest Haine:						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	<u>Extracted</u>	<u>Analyzed</u>
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1.0		9/23/05
Tert-butyl alcohol (TBA)	ND	10	μg/L	1.0		9/23/05
Di-isopropyl ether (DIPE)	ND -	1.0	μg/L	1.0		9/23/05
Ethyl tert-butyl ether (ETBE)	ND	1.0	μg/L	1.0		9/23/05
Benzene	210	25	μg/L	50	•	9/23/05
Tert-amyl methyl ether (TAME)	ND	1.0	μg/L	1.0		9/23/05
Toluene	34	0.50	μg/L	1.0		9/23/05
Ethylbenzene	110	25	μg/L	50		9/23/05
m,p-Xylene	57	0.50	μg/L	1.0		9/23/05
o-Xylene	6.2	0.50	μg/L	1.0		9/23/05
Surrogate: 1 4-Dichlorohenzene-d4	96.3	80.8-139	% Rec	1.0		9/23/05

Test Name: TPH as Gasoline

Reference: LUFT/EPA 8260B Modified

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gasoline	3,300	50	µg/L	1.0		9/23/05

North Coast Laboratories, Ltd.

	Pvt. cust. paying on pickup							OC SUN	QC SUMMARY REPORT	PORT
Work Order: 0509275	275							!	N. C. offen	d Diam'r
Project: 3888.	3888.01, Blue Lake Market		The state of the s						IMEUDO	Method Blank
Sample ID MB 092205	Batch ID: R37053	Test Code;	Test Code: 8260OXYW	Units: µg/L		Analysis	Date 9/22/0	Analysis Date 9/22/05 7:11:00 AM	Prep Date	
Client ID:		Run ID:	ORGCMS2_050922B	50922B		SedNo:	533306			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLImit	if Qual
Methyl tert-butyl ether (MTBE)	3E) ND	1.0	WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA							
Tert-butyl alcohol (TBA)	ON	10								
Di-isopropyl ether (DIPE)	ON	1.0								
Ethyl tert-butyl ether (ETBE)		1.0								
Benzene	QN	0.50								
Tert-amyl methyl ether (TAME)		1.0								
Toluene	ON .	0.50								
Ethylbenzene	0.07377	0.50					,			ר
m,p-Xylene	QN	0.50			,					
o-Xylene	0.1203	0.50								7
1,4-Dichlorobenzene-d4	0.907	0.10	1.00	0	90.7%	22	139	0		
Sample ID MB-14278	Batch ID: 14278	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Date 9/23/	Analysis Date 9/23/05 8:06:55 PM	Prep Date 9/23/05	90.
Client ID:		Run ID:	ORGC8_050923B	323B		SeqNo:	533977	2		
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	nit Qual
MTBE	QN	0.050		-						
Benzene	QN	0.0050								
Toluene	QN	0.0050								
Ethylbenzene	QN	0.0050								
m,p-Xylene	QN	0.0050								
o-Xylene	Q	0.0050								
Cis-1,2-Dichloroethylene	0.979	0.10	1.00	0	97.9%	72	135	0		

B - Analyte detected in the associated Method Blank S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

CLIENT:	Pyt. cust. paying on pickup
Work Order:	0509275
Project:	3888.01, Blue Lake Market

Sample ID MB 092205	Batch ID: R37048	Test Code:	Code: GASW-MS	Units: µg/L		Analysis	Analysis Date 9/22/05 7:11:00 AM	M Prep Date)ate	
Client ID:		Run ID:	ORGCMS2_050922A	50922A		SeqNo:	533270			
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val		%RPD RPDLimit	Qual
TPHC Gasoline	QN	920	**************************************	7 PF 7 PF 1 PF 1 PF 1 PF 1 PF 1 PF 1 PF						AN ALAMANA LA PROPERTO DE LA CALONA DEL CALONA DE LA CALONA DEL CALONA DE LA CALONA DEL LA CALONA DEL CALONA DE LA CALONA DEL CALONA DEL CALONA DE LA CALONA DEL CALONA
Sample ID MB-14278	Batch ID: 14278	Test Code:	Test Code: TPHCGS	Units: µg/g		Analysis	Analysis Date 9/23/05 8:06:55 PM		Prep Date 9/23/05	
Clent ID:		Run ID:	ORGC8_050923A			SeqNo:	533924			
Analyte	Result	Limit		SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	# %RPD	RPDLimit	Qual
TPHC Gas (C6-C14)	0.3578	1,0					T T TOTAL TO			, T

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

S - Spike Recovery outside accepted recovery limits

North Coast Laboratories, Ltd.

CLÆNT: Work Order: Project:	Pvt. cust. 0509275 3888.01,]	Pvt. cust. paying on pickup 0509275 3888.01, Blue Lake Market							QC SUIA La	QC SUMMARY REPORT Laboratory Control Spike	POR
Sample ID LCS-05604 Client ID:	5604	Batch ID: R37053	Test Code: Run ID:	Test Code: 8260OXYW Units: Run ID: ORGCMS2_050922B	Units: µg/L 350922B		Analysis SeqNo:	Analysis Date 9/22/05 3:06:00 AM SeqNo: 533303	::06:00 AM	Prep Date	
Analyte		Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	D Ref Val	%RPD RPDLimit	iit Qual
Methyl tert-butyl ether (MTBE)	her (MTBE)	18.66	1.0	20.0	0	93.3%	80	120	0		
Tert-butyl alcohol (TBA)	TBA)	437.2	4	400	0	109%	25	162	0		
Di-isopropyl ether (DIPE)	(DIPE)	18.52	1.0	20.0	0	92.6%	88	120	0		
Ethyl tert-butyl ether (ETBE)	эr (ETBE)	18.98	1.0	20.0	0	94.9%	11	120	·0		
Benzene		18.96	0.50	20.0	0	94.8%	78	117	0		
Tert-amyl methyl ether (TAME)	ther (TAME)	17.93	1.0	20.0	0	89.7%	64	136	0		
Toluene		18.73	0.50	20.0	0	93.7%	80	120	0		
Ethylbenzene		18.80	0.50	20.0	0	94.0%	88	120	0		
m,p-Xylene		37.12	0.50	40.0	0	92.8%	80	120	0		
o-Xylene		18.36	0.50	20.0	0	91.8%	80	120	0		
1,4-Dichlorobenzene-d4	ne-d4	1.02	0.10	1.00	0	102%	₩	139	0		

Analyte Result Limit SPK value SPK Ref Val % Methyl tert-butyl ether (MTBE) 18.76 1.0 20.0 0 9 Tert-butyl alcohol (TBA) 18.76 1.0 20.0 0 9 Di-isopropyl ether (DIPE) 18.49 1.0 20.0 0 9 Ethyl tert-butyl ether (ETBE) 19.25 1.0 20.0 0 9 Benzene 18.62 0.50 20.0 0 9 Tert-amyl methyl ether (TAME) 18.09 1.0 20.0 0 9 Toluene 18.07 0.50 20.0 0 9 Ethylbenzene 18.39 0.50 20.0 0 9 m.p-Xylene 36.47 0.50 20.0 0 9	Coc. or	Anaiysis i	Analysis Date 9/22/05 3:37:00 AM		Prep Date	
Result Limit SPK value SPK Ref Value Limit SPK value SPK Ref Value Limit SPK value SPK Ref Value Limit A40.6 0 0 0 0 0 0 0 0 0	050922B	SeqNo:	533304			
E) 18.76 1.0 20.0 0 440.6 10 400 0 18.49 1.0 20.0 0 19.25 1.0 20.0 0 18.52 0.50 20.0 0 18.09 1.0 20.0 0 18.09 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 20.0 0		LowLimit	HighLimit RPD Ref Val	i Val %RPD	oo RPDLimit	Qual
440.6 10 400 0 18.49 1.0 20.0 0 19.25 1.0 20.0 0 18.52 0.50 20.0 0 18.09 1.0 20.0 0 18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 20.0 0	0 93.8%	80	120	18.7 0.574%	20 50	
18.49 1.0 20.0 0 19.25 1.0 20.0 0 18.52 0.50 20.0 0 18.09 1.0 20.0 0 18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 20.0 0	0 110%	25	162	437 0.765%	5% 20	
19.25 1.0 20.0 0 18.52 0.50 20.0 0 18.09 1.0 20.0 0 18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 40.0 0 18.42 0.50 20.0 0	0	80	120	18.5 0.157%	7% 20	
18.52 0.50 20.0 0 18.09 1.0 20.0 0 18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 40.0 0 18.42 0.50 20.0 0	0	7.7	120	19.0 1.39%	3% 20	
18.09 1.0 20.0 0 18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 40.0 0 18.42 0.50 20.0 0	0 92.6%	78	117		5% 20	
18.07 0.50 20.0 0 18.39 0.50 20.0 0 36.47 0.50 40.0 0 18.42 0.50 20.0 0	0	64	136	0	3% 20	
18.39 0.50 20.0 0 36.47 0.50 40.0 0 18.42 0.50 20.0 0	0 90.3%	80	120		3% 20	
36.47 0.50 40.0 0 18.42 0.50 20.0 0	0 91.9%	80	120		5% 20	
18,42 0.50 20.0 0	0 91.2%	88	120	37.1 1.78%	3% 20	
	0 92.1%	80	120	18.4 0.370%	0% 20	
1,4-Dichlorobenzene-d4 1.01 0.10 1.00 0	0 101%	20	139	1.02 0.957%	7% 20	

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

QC SUMMARY REPORT

Laboratory Control Spike

3888.01, Blue Lake Market

0509275

Work Order:

Project:

CLIENT:

Pvt. cust. paying on pickup

Sample ID LCS-14278	Batch ID: 14278	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Date 9/23/0	Analysis Date 9/23/05 5:06:20 PM	Prep Da	Prep Date 9/23/05	
Clent ID:		Run ID:	ORGC8_050923B	23B		SeqNo:	533975	ю			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Oual
MTBE	0.3801	0.050	0.400	0	95.0%	75	124	0			
Benzene	0.05079	0.0050	0.0500	0	102%	80	128	0			
Toluene	0.05681	0.0050	0.0500	0	114%	85	126	0			
Ethylbenzene	0.05066	0.0050	0.0500	0	101%	80	126	0			
m,p-Xylene	0.09660	0.0050	0.100	0	96.6%	84	130	0			
o-Xylene	0.04848	0.0050	0.0500	0	97.0%	84	125	0			
Cis-1,2-Dichloroethylene	1.14	0.10	1.00	0	114%	72	135	0			
Sample ID LCSD-14278	Batch ID: 14278	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Date 9/23/	Analysis Date 9/23/05 5:42:46 PM	Prep Da	Prep Date 9/23/05	
Client ID:		Run (D:	ORGC8_050923B	23B		SeqNo:	533976	9			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	0.3799	0.050	0.400	0	95.0%	75	124	0.380	0.0536%	15	
Benzene	0.05047	0.0050	0.0500	0	101%	8	128	0.0508	0.640%	15	
Toluene	0.05635	0.0050	0.0500	0	113%	85	126	0.0568	0.801%	15	
Ethyfbenzene	0.05055	0.0050	0.0500	0	101%	80	126	0.0507	0.222%	15	
m,p-Xylene	0.09626	0.0050	0.100	0	96.3%	8	130	0.0966	0.347%	t	
o-Xylene	0.04851	0.0050	0.0500	0	97.0%	84	125	0.0485	0.0563%	15	
Cis-1,2-Dichloroethylene	1.12	0.10	1.00	0	112%	72	135	1.14	1.35%	15	
Sample ID LCS-05605	Batch ID: R37048	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Date 9/22/	Analysis Date 9/22/05 5:09:00 AM	Prep Date	ate	
Client ID:		Run ID:	ORGCMS2_050922A	50922A		SeqNo:	533267	21			
Analyte	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit		HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Gasoline	1,040	50	1,000	0	104%	80	120	0	***************************************	***************************************	

ND - Not Detected at the Reporting Limit Qualifiers: J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

CLIENT: Pvt. cust. paying on pickup
Work Order: 0509275

Project: 3888.01, Blue Lake Market

QC SUMMARY REPORT
Laboratory Control Spike Duplicate

Sample ID LCSD-05605	Batch ID: R37048	Test Code:	Test Code: GASW-MS	Units: µg/L		Analysis	Analysis Date 9/22/05 5:40:00 AM	5:40:00 AM	Prep Date	fe	
Client ID:		Run ID:	ORGCMS2_050922A	50922A		SedNo:	533268				
Analyte	Result	Lmit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD	%RPD RPDLimit	Qual
TPHC Gasoline	1,034	20	1,000	0	103%	80	120	1,040	0.581%	20	
Sample ID LCS-14278-G	Batch ID: 14278	Test Code;	Test Code: TPHCGS	Units: µg/g		Analysis	Analysis Date 9/23/05 6:19:08 PM	6:19:08 PM	Prep Da	Prep Date 9/23/05	
Client ID:		Run ID:	ORGC8_050923A	23A		SeqNo:	533922				
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	(PD Ref Val	%RPD	%RPD RPDLimit	Qual
TPHC Gas (C6-C14)	11.62	1.0	10.0	0	116%	102	128	0		THE PROPERTY OF THE PROPERTY O	
Sample ID LCSD-14278-G Client ID:	Batch ID: 14278	Test Code: Run ID:	Test Code: TPHCGS Un Run ID: ORGC8_050923A	Units: µg/g 123A		Analysis SeqNo:	Analysis Date 9/23/05 6:55:20 PM SeqNo: 533923	6:55:20 PM	Prep Da	Prep Date 9/23/05	
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	LowLimit HighLimit RPD Ref Val	(PD Ref Val	%RPD	RPDLimit	Qual
TPHC Gas (C6-C14)	11.58	1.0	10.0	0	116%	102	128	11.6	0.359%	15	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

NORTH	LABORAT	5680 West End Road • 707-822-4649
(E	不多	De la constant de la

NORTH COAST ABORATORIES LTD.

30 West End Road · Arcata · CA 95521-9202 707-822-4649 Fax 707-822-6831

Chain of Custody

Staposo

LABOKATOKY NUMBEK:	TAT: ☐ 24 Hr ☐ 48 Hr ☐ 5 Day ☐ 5–7 Day X STD (2–3 Wk) ☐ Other: PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAXM Verbal ☐ By: // /	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO2; b—HCl; c—H2SO4; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other	SAMPLECONDITION/SPECIAL INSTRUCTIONS:	3888-31 3888-31 3888-511	3888-312 3888-512 3888-512 (00/01/01/02) 3888-512	SAMPLE DISPOSAL 7-(5-c2- 22.2
	S S S S S S S S S S S S S S S S S S S	E I F J P	######################################	3/	2		WCEIVED: BY (Sign)
	Attention: Pat FIKINS Results & Invoice to: Address: 2020 Ardgah Ct	Phone: Copies of Report to: Tim McIsan- I ACO	Sampler (Sign & Print): MCK Tolk B, Becker Project Number: 3888, 01 Project Name: Blue Lake Market Purchase Order Number:	LABID SAMPLEID DATE TIME MATRIX* 3888-Bil-S4 915/65 Am 5	3888 - BII - M C-W C	3888 - 312-18 5 3888 - 312-12 5 3888 - 312-12 5 3888 - 312-16 5	RELINQUISHED BY (Sign & Print)

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

Chain of

>
po
Custo
3
) Jo

Stebso

P. 2 of 3

LABOKATOKY NOMBEK:	TAT: \$\text{C} 24 \text{ Hr } \text{C} 48 \text{ Hr } \text{C} 5 \text{Day } \text{C} 5-7 \text{Day } \text{E} 7-7 \t	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L Cg; 9—40 ml VOA; 10—125 ml BG; 711—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other	3888-BG (HOT) 3888-BG (1 3888-BS		DATE/TIME SAMPLE DISPOSAL Pickup Disposal of Non-Contaminated Disposal of Non-Cont
	d B CONTAINER PRESERVATIVE	TOUT LINES AND THE WATTREET AND THE WATT		3/1/3	DATE/TIME A RECEIVED BY (Sign)
	Attention: Tat Folkins Results & Invoice to: Address: 2020 Arkan Ct Eurefa, Ct 25503 Phone: Copies of Report to: Tim McLson - L	Sampler (Sign & Print): 1/4 /5 GC Tale Project Number: 3888.01 Project Name: 3888.01 Project Number: 3888.01 Purchase Order Number: 5889.01	3888-73-51.6 4/13/05 PM 3888-73-58 3888-73-54	2절50 리	RELINQUISHED BY (Sign & Print) DATE/IN

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

NORTH COAST LABORATORIES LTD.

5680 West End Road • Arcata • CA 95521-9202 707-822-4649 Fax 707-822-6831

Chain of Custody

LABORALORY NUMBER:	TAT: \$\text{ 24 Hr } \text{ 48 Hr } \text{ 5 Day } \text{ 5-7 Day } \text{ 5.7D (2-3 Wk) } \text{ 0ther: } PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAXAI Verbal ☐ By:/	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L. Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L. BG; 8—1 L. cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO2; b—HCl; c—H2O4; d—Na22O2; e—NaOH; f—C2H3O2Cl; 8—other	6	3888- BH HOT)	3888 - BH	DATE/TIME SAMPLE DISPOSAL Main Disposal of Non-Contaminated Main M	CHAIN OF CUSTODY SEALS Y/N/NA STATES SHIPPED VIA: UPS Air-Ex Fed-Ex Bus Hand
	PRESERVATIVE Job ZT	13 COMIVINER	# \$ 153 F & \$ 100 F C C C C C C C C C C C C C C C C C C			£	MECENED BY (Sign)	
	Attention: 7at Felkins Results & Invoice to: Address: 2020 Adah Ch	to: Tim Nelson - LACO	Print): MUSEL TULBERON: 3888-01 Blue Lake Market Number:	3888-734-54 9/13/05 17M 5	15 P	3888-114-5 H 5 8 5 3888-124-5 H 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	REINQUISHED BY (Sign & Print) DATE/TIME 1	
: T. j.	Attention: 74	Phone: Copies of Report to:	Sampler (Sign & Print):	Meilo S	3888-1814 3888-1814	3888-114 3888-114 3888-114	RHINGUIS	

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

September 28, 2005

RECEIVED
LACO ASSOCIATES
SEP 2 8 2005

Pvt. cust. paying on pickup

3Y: <u>1</u>G

Attn: Pat Folkins

TON

RE: 3888.01, Blue Lake Market

Order No.: 0509271 Invoice No.: 53132

PO No.:

ELAP No. 1247-Expires July 2006

SAMPLE IDENTIFICATION

Fraction	Client Sample Description	
01A	3888-MW4-S8	_
02A	3888-MW4-S12	
03A	3888-MW4-S14	
04A	3888-MW4-S16	
05A	3888-MW5-S4	
06A	3888-MW5-S8	
07A	3888-MW5-S12	
08A	3888-MW5-S16	

ND = Not Detected at the Reporting Limit Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director

North Coast Laboratories, Ltd.

CLIENT:

Pvt. cust. paying on pickup

Project:

3888.01, Blue Lake Market

Lab Order:

0509271

CASE NARRATIVE

Date: 28-Sep-05

TPH as Gasoline:

Samples 3888-MW5-S4 and 3888-MW5-S16 do not present a peak pattern consistent with that of gasoline. The reported results represent the amount of material in the gasoline range.

The gasoline values for samples 3888-MW4-S14 and 3888-MW4-S16 include the reported gasoline components in addition to other peaks in the gasoline range.

BTEX:

Some reporting limits were raised for samples 3888-MW4-S14, 3888-MW4-S16 and 3888-MW5-S16 due to matrix interference.

28-Sep-05

Client Sample ID: 3888-MW4-S8

WorkOrder: 0509271

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/14/05 0:00

Lab ID: 0509271-01A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Test 14mile.						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/26/05	9/26/05
Benzene	ND	0.0050	μg/g	1.0	9/26/05	9/26/05
Toluene	0.0072	0.0050	µg/g	1,0	9/26/05	9/26/05
Ethylbenzene	ND	0.0050	µg/g	1.0	9/26/05	9/26/05
m,p-Xylene	0.011	0.0050	μg/g	1.0	9/26/05	9/26/05
o-Xvlene	0.0052	0.0050	μg/g	1.0	9/26/05	9/26/05
Surrogate: Cis-1.2-Dichloroethylene	102	71.8-135	% Rec	1.0	9/26/05	9/26/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

<u>Parameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
TPHC Gas (C6-C14)	ND	1.0	µg/g	1.0	9/26/05	9/26/05

Client Sample ID: 3888-MW4-S12

Lab ID: 0509271-02A

Received: 9/15/05

Collected: 9/14/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/26/05	9/26/05
Benzene	ND	0.0050	μg/g	1.0	9/26/05	9/26/05
Toluene	ND	0.0050	μg/g	1.0	9/26/05	9/26/05
Ethylbenzene	ND	0.0050	µg/g	1.0	9/26/05	9/26/05
m.p-Xylene	ND	0.0050	μg/g	1.0	9/26/05	9/26/05
o-Xvlene	ND	0.0050	μg/g	1.0	9/26/05	9/26/05
Surrogate: Cis-1.2-Dichloroethylene	101	71.8-135	% Rec	1.0	9/26/05	9/26/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	μg/g	1.0	9/26/05	9/26/05

28-Sep-05

Client Sample ID: 3888-MW4-S14

WorkOrder: 0509271

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/14/05 0:00

Lab ID: 0509271-03A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

<u>Parameter</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	µg/g	1.0	9/26/05	9/27/05
Benzene	0.012	0.0050	µg/g	1.0	9/26/05	9/27/05
Toluene	0.023	0.0050	μg/g	1.0	9/26/05	9/27/05
Ethylbenzene	0.047	0.0050	µg/g	1.0	9/26/05	9/27/05
m,p-Xylene	0.029	0.0050	µg/g	1.0	9/26/05	9/27/05
o-Xviene	ND	0.010	μg/g	1.0	9/26/05	9/27/05
Surrogate: Cis-1,2-Dichloroethylene	102	71.8-135	% Rec	1.0	9/26/05	9/27/05

Test Name: TPH as Gasoline Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter .	Result	<u>Limit</u>	<u>Units</u>	DF	Extracted	Analyzed
TPHC Gas (C6-C14)	6.6	1.0	ha/a	1.0	9/26/05	9/27/05

Client Sample ID: 3888-MW4-S16

Lab ID: 0509271-04A

Received: 9/15/05

Collected: 9/14/05 0:00

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter	Result	<u>Limit</u>	Units	$\overline{ extbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/26/05	9/26/05
Benzene	ND	0.0050	pg/g	1.0	9/26/05	9/26/05
Toluene	ND	0.015	ha/a	1.0	9/26/05	9/26/05
Ethylbenzene	0.0085	0.0050	μg/g	1.0	9/26/05	9/26/05
m.p-Xylene	0.012	0.0050	µg/g	1.0	9/26/05	9/26/05
o-Xviene	ND	0.010	µg/g	1.0	9/26/05	9/26/05
Surrogate: Cis-1,2-Dichloroethylene	99.2	71.8-135	, % Rec	1.0	9/26/05	9/26/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	<u>DF</u>	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	1.3	1.0	μg/g	1.0	9/26/05	9/26/05

28-Sep-05

WorkOrder: 0509271

ANALYTICAL REPORT

Client Sample ID: 3888-MW5-S4

Received: 9/15/05

Collected: 9/14/05 0:00

Lab ID: 0509271-05A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Parameter Parameter	Result	<u>Limit</u>	Units	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	µg/g	1.0	9/26/05	9/27/05
Benzene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
Toluene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Ethylbenzene	ND	0.0050	рд/д	1.0	9/26/05	9/27/05
m,p-Xylene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
o-Xviene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
Surrogate: Cis-1.2-Dichloroethylene	100	71.8-135	% Rec	1.0	9/26/05	9/27/05

Test Name: TPH as Gasoline

Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

Parameter	Result	<u>Limit</u>	<u>Units</u>	DF	Extracted	Analyzed
TPHC Gas (C6-C14)	2.8	1.0	µg/g	1.0	9/26/05	9/27/05

Client Sample ID: 3888-MW5-S8

Received: 9/15/05

Collected: 9/14/05 0:00

Lab ID: 0509271-06A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Par <u>ameter</u>	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	µg/g	1.0	9/26/05	9/27/05
Benzene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Toluene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
Ethylpenzene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
m,p-Xylene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
o-Xylene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Surrogate: Cis-1,2-Dichloroethylene	99.8	71.8-135	% Rec	1.0	9/26/05	9/27/05

Test Name: TPH as Gasoline

Parameter	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
TPHC Gas (C6-C14)	ND	1.0	μg/g	1.0	9/26/05	9/27/05

28-Sep-05

WorkOrder: 0509271

0.500055

Client Sample ID: 3888-MW5-S12

ANALYTICAL REPORT

Received: 9/15/05

Collected: 9/14/05 0:00

Collected: 9/14/05 0:00

Lab ID: 0509271-07A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

T CSt T TIETHO.						
Parameter	Result	<u>Limit</u>	<u>Units</u>	$\underline{\mathbf{DF}}$	Extracted	Analyzed
MTBE	ND	0.050	μg/g	1.0	9/26/05	9/27/05
Benzene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Toluene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
Ethylbenzene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
m,p-Xylene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
o-Xylene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
Surrogate: Cis-1,2-Dichloroethylene	99.0	71.8-135	% Rec	1.0	9/26/05	9/27/05

Test Name: TPH as Gasoline Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

 Parameter
 Result
 Limit
 Units
 DF
 Extracted
 Analyzed

 TPHC Gas (C6-C14)
 ND
 1.0
 μg/g
 1.0
 9/26/05
 9/27/05

Client Sample ID: 3888-MW5-S16

Lab ID: 0509271-08A

Test Name: BTEX

Reference: EPA 5035/EPA 8021B

Received: 9/15/05

Parameter Parame	Result	<u>Limit</u>	<u>Units</u>	$\overline{\mathbf{DF}}$	Extracted	<u>Analyzed</u>
MTBE	ND	0.050	μg/g	1.0	9/26/05	9/27/05
Benzene	ND	0.0050	⊬g/g	1.0	9/26/05	9/27/05
Toluene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Ethylbenzene	ND	0.020	µg/g	1.0	9/26/05	9/27/05
m.p-Xylene	ND	0.0050	μg/g	1.0	9/26/05	9/27/05
o-Xviene	ND	0.0050	µg/g	1.0	9/26/05	9/27/05
Surrogate: Cis-1,2-Dichloroethylene	91.6	71.8-135	% Rec	1.0	9/26/05	9/27/05

Test Name: TPH as Gasoline Reference: EPA 5035/GCFID(LUFT)/EPA 8015B

 Parameter
 Result
 Limit
 Units
 DF
 Extracted
 Analyzed

 ΤΡΗC Gas (C6-C14)
 1.5
 1.0
 μg/g
 1.0
 9/26/05
 9/27/05

Ltd.
atories,
Labora
Coast
North

CLIENT: Work Order:	Pvt. cust, paying on pickup 0509271		. *					QC SUN	QC SUMMARY REPORT	REPO	RT
Project:	3888.01, Blue Lake Market					-				Method Blank	lank
Sample ID MB-14288	288 Batch ID: 14288	Test Code: BTXES	BTXES	Units: µg/g		Analysis	Date 9/26/	Analysis Date 9/26/05 9:39:43 PM	Prep Date	Prep Date 9/26/05	I
Client ID:		Run ID:	ORGC8_050926B	26B		SeqNo:	534049	σ,			
Analyte	Result	Limit	SPK value SPK Ref Val	SPK Ref Val	% Rec	LowLimit	HighLimit	% Rec: : LowLimit . HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	0.02812	0.050			A STATE OF THE PERSON NAMED OF THE PERSON NAME	***************************************	***************************************	***************************************	A STREET STREET, STREE		ļ,
Benzene	QV	0.0050									
Toluene	QN	0.0050									
Ethylbenzene	QN	0.0050									
m,p-Xyfene	QN	0.0050									
o-Xylene	QN	0.0050									
Cis-1,2-Dichloroethylene	ylene 0.973	0.10	1.00	0	97.3%	. 72	135	. 0			
Sample ID MB-14288	288 Batch ID: 14288	Test Code:	Test Code: TPHCGS	· Units: µg/g		Analysis	Date 9/26/	Analysis Date 9/26/05 9:39:43 PM	Prep Date	Prep Date 9/26/05	
Client ID:	. '	Run 1D:	ORGC8_050926A	Z6A		SeqNo:	534031	Σ			
Analyte	Result	Limit	SPK value	SPK value · SPK Ref Val	% Rec	LowLimit	HighLimit	% Rec . LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
TPHC Gas (C6-C14)	4) 0.4787	1.0					THE THE PERSON NAMED IN TH	**************************************			-

J - Analyte detected below quantitation limits

North Coast Laboratories, Ltd.

CLIENT

Project: 388 Sample ID LCS-14288 Client ID:											
Sample ID LCS-14288	3888.01, Blue Lake Market	:	·	· ·				L	boratory	Laboratory Control Spike	pike
Client ID.	Batch ID: 14288	Test Code:	Code: BTXES	Units: µg/g		Analysis	Analysis Date 9/26/05 6:41:35 PM	5 6:41:35 PM	Prep Dat	Prep Date 9/26/05	.
		Run ID:	ORGC8_050926B	26B		SeqNo:	534047				
Analyte ·	Result	Limit	SPK value	SPK Ref Val	% Rec	LowLimit	HighLimit RPD Ref Val	RPD Ref Val	%RPD	RPDL imit	Qual
MTBE	0.3728	0.050	0.400	0	93.2%	75	124	0		A PROPERTY OF THE PROPERTY OF	-
Benzene	0.04993	0.0050	0.0500	0	39.9%	98	128	0			
Toluene	0.05495	0.0050	0.0500	0	110%	85	126	0			
Ethylbenzene	0.05080	0.0050	0.0500	0	102%	80	126	0			:
m,p-Xylene	0.09883	0.0050	0.100	0	98.8%	\$	130				
o-Xylene	0.05030	0.0050	0.0500	0	101%	8	125	0			.*
Cis-1,2-Dichloroethylene	7-	0.10	1.00	0	111%	72	135	0			
Sample ID LCSD-14288	Batch ID: 14288	Test Code;	Code: BTXES	Units: µg/g		Analysis	Date 9/26/09	Analysis Date 9/26/05 7:17:35 PM	Prep Dat	Prep Date 9/26/05	
Clent ID:		Run ID:	ORGC8_050926B	26B		SeqNo:	534048				
Analyte	Result	Limit	SPK value	SPK Ref Val	. % Rec	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
MTBE	0.3821	0.050	0.400	0	95.5%	75	124	0.373	2.47%	15	
Вепzеле	0.05041	0.0050	0.0500	0	101%	89	128	0.0499	0.962%	ট	
Toluene	0.05478	0.0050	.00200	0	110%	. 85	126	0.0550	0.316%	ਨ	
Ethylbenzene	0.05128	0.0050	0.0500	0	103%	80	126	0.0508	0.935%	15	
m,p-Xylene	0.09865	0.0050	0.100	. 0	98.6%	84	130	0,0988	0.187%	ਹ	
o-Xylene	0.04959	0.0050	0.0500	0	99.2%	84	125	0.0503	1.41%	5	
Cis-1,2-Dichloroethylene	1.06	0.10	1.00	0	106%	72	135	1.1	4.46%	15	
Sample ID LCS-14288-G	3 · · · Batch ID: 14288	Test Code:	Code: TPHCGS	Units: µg/g		Analysis	Date 9/26/0	Analysis Date 9/26/05 7:53:19 PM	Prep Da	Prep Date 9/26/05	ľ
Cllent ID:		Run ID:	ORGC8_050926A	26A		SeqNo:	534029				
Analyte	Result	· · · Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	HighLimit F	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
TPHC Gas (C6-C14)	11,66	1.0	10.0	0	117%	102	128	0		***************************************	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Pvt. cust. paying on pickup 0509271 Work Order: CLIENT:

3888.01, Blue Lake Market

Project:

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

400		2007	3									
Sample ID LCSD-14Z88-G Batch ID: 14Z88	5 8 8	Batch ID: 14288	lest Code	TPHCGS	est code: TPHCGS Units: µg/g		Analysis	Analysis Date 9/26/05 8:28:53 PM	3 P.M	Prep Da	Prep Date 9/26/05	
Client ID:	:		Run ID:	ın ID: ORGC8_050926A	926A	:	SeqNo:	534030				
Analyte		Result		SPK value	Limit SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	Val	%RPD	%RPD RPDLImit Qual	Qual
TPHC Gas (C6-C14)		11.62	1.0	. 10.0	0 116%	116%	102	128 1	11.7	11.7 0.341%	15	
				-								

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

NORTH COAST	LABORATORIES LTD.	5680 West End Road • Arcala • CA 95521-9202 707-822-4649 Fax 707-822-6831
K	不不	D

	<u>~</u>
	001S
,	SI
77	
(_
* 7	7

LABOKAIOKY NUMBEK:	TAT: \$\Begin{array}{c c c c c c c c c c c c c c c c c c c	REPORTING REQUIREMENTS: State Forms ☐ Preliminary: FAX Verbal ☐ By: / /	CONTAINER CODES: 1—1/2 gal. pl; 2—250 ml pl; 3—500 ml pl; 4—1 L Nalgene; 5—250 ml BC; 6—500 ml BC; 7—1 L BC; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar; 13—brass tube; 14—other PRESERVATIVE CODES: a—HNO ₃ ; b—HCl; c—H ₂ SO ₄ ; d—Na ₂ S ₂ O ₃ ; e—NaOH; f—C ₂ H ₃ O ₂ Cl; g—other	SAMBLE GONDITION/SPECIAL INSTRUCTIONS	3888-MU4	3888- MW5	3888 - MWS 3888 - MWS 3888 - MWS	2 9.4 - COD/UN FOND= 4.6 C	DATE/TIME SAMPLE DISPOSAL V	700
	PRESERVATIVE	[3 COONIVINER	SISYIANA	XX 1					KECHVED BY (Sign)	スシニニアイグアで
	Folkins Arden Ch	eA-75563	ORMATION SI LE MArtet	DATE TIME MATRIX*		*W-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Print) DATE/TIME	ت
	Attention: Pat To Khas Results & Invoice to: Address: 2020 Arden	ト ト	Sampler (Sign & Print): MUSS Project Number: 3888.01 Project Name: 3/2 Lake Mar	LABID SAMPLEID - SESS-PANU4 - SE	3888 - MW4 - SIZ	3888- 3888- 3888-	3800 MUSS - 38			コログイン・ション・ブラント

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

Bus | Hand

CHAIN OF CUSTODY SEALS Y/N/NA SHIPPED VIA: UPS Air-Ex Fed-Ex Bus J Han

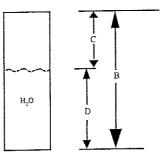
Attachment 3

LACO ASSOCIATES P.O. Box 1023 - Eureka, California 95502 - 707.443.5054

WELL DEVELOPMENT RECORD

SHEET 2 of 3

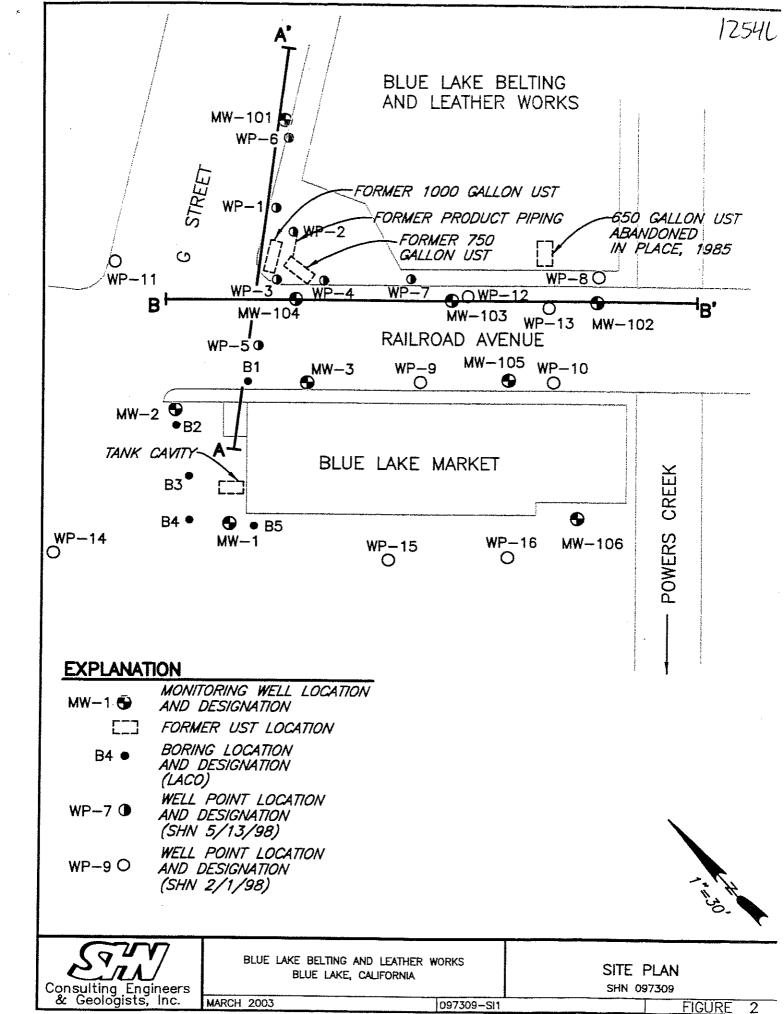
Project N Well ID:_	ame: B	lue La	4 M	arke	Dr	ate Insta	lled:	3 883			
Contracto	or:	De	evelopm	ent Co	ntractor:		- 4 (6				
Casing D	iameter:	1.5									
		VELOPMEN'									
		☐ Bailing		ing	☐ Describ	e					
Equipme	nt deconta	minated prior t				l No					
											
		IE INFORMA		0 2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
Casing ID		1.0 (gal/ft) 0.04		.0 2.2		0.65	0.75	1.0	1.5	2.0	2.6
Unit Casin	g Volume (A) (gai/it) 0.04	0.07 0.	10 0.2				<u> </u>		<u> </u>	<u> </u>
Volume	of Water A	pth (B)	(D) During Install (gal)				Н,0			3	
Time	Pump Rate	Depth (ft)		pH	Cond (mS/cm)		erature ir C	Turbidi (NTU		Commo	ents
Develop	oer Signatu	ire:	/_	Chor	7			Date:_	9/0	26/0.	3

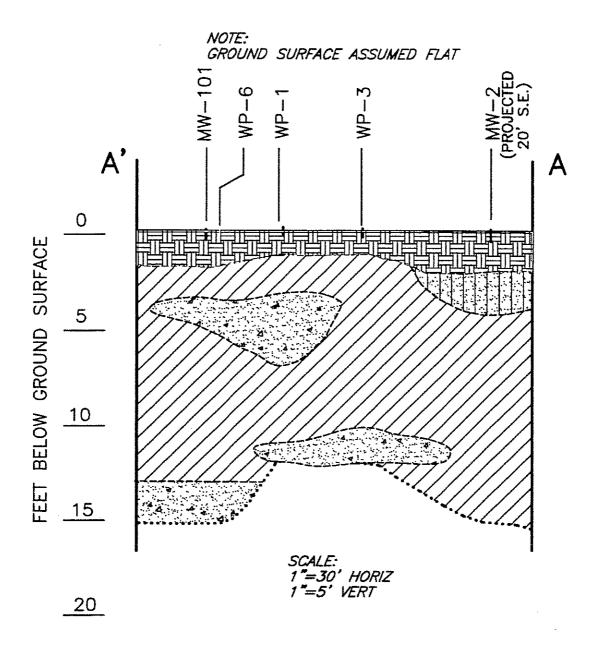

LACO ASSOCIATES

P.O. Box 1023 • Eureka, California 95502 • 707.443.5054

WELL DEVELOPMENT RECORD

								SHEET	<u>3</u>	_ of	3
Project Name: Bluc Well ID: MW#5	Lak	(c)	Nark	(ct	P	roject N	o.: _	3 88	(8.0) [
Well ID: MW = 5					— D	ate Insta	ılled:				
Company / C.C.C.					D	evelopn					
Contractor: Laco Casing Diameter: 1.3	<u>- 11</u>					-					
METHOD OF DEVELOP	MENI										
☐ Swabbing ☐ Baili	ng	Ď Pı	ımping		Descri	oe	<u> </u>				
Equipment decontaminated	prior to	develop	ment	YΥ	es [] No					
Describe											
CASING VOLUME INFO	RMAT	<u>ION</u>									
Casing ID (inch)	1.0	1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0
Unit Casing Volume (A) (gal/ft)	0.04	0.09	0.16	0.2	0.37	0.65	0.75	1,0	1.5	2.0	2.6
PURGING INFORMATION	<u>ON</u>		//3-								


PURGING INFORMATION
Measured Well Depth (B) / L/. 25 ft.
Measured Water Level Depth (C) 13. 50 ft.
Length of Static Water Column (D) $\frac{14}{45} - \frac{13.39}{(B)} = \frac{1.07}{ft}$ ft.
Casing Water Volume $\frac{0.09}{(A)} \times \frac{1.07}{(D)} = 0.09 \& gal$
Volume of Water Added to Well During Installation = / S gal
Total Purge Volume = $1 \% . 3$ (gal)

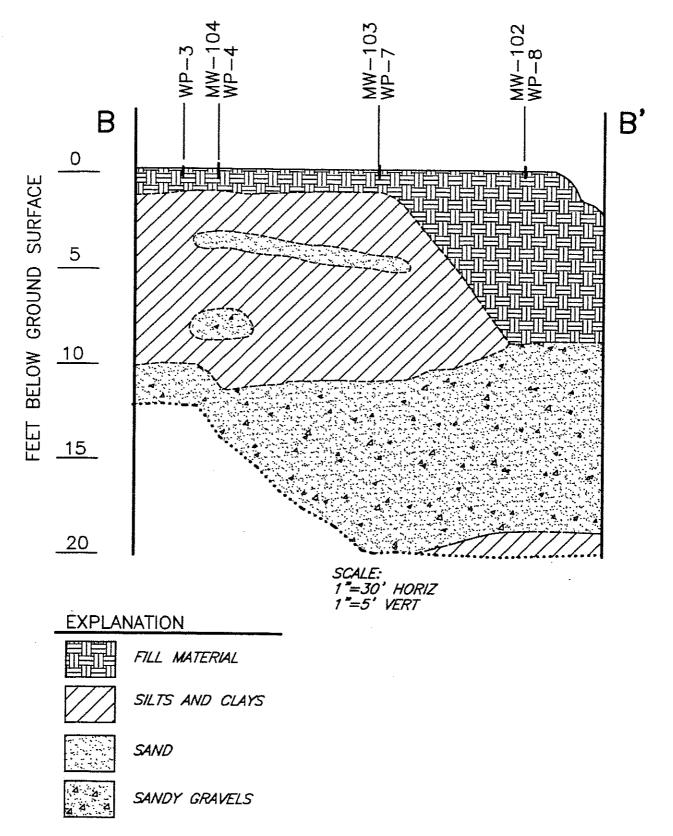


Time	Pump Rate	Water Level Depth (ft)	Volume Removed (gal)	pН	Cond (mS/cm)	Temperature F or C	Turbidity (NTU)	Comments
10:30	.5	14,2	10			/	7100	Sitty/sand
	0.067	12.04	2.0				>100	Turbid
11:30	0.05	11 51	1.5	/		Ì	>100	Turbid
12:00	0.05	11 60	1.5	/	/		>100	Turbid
	0,05	11 63	1.5	\	7	1	>100	Tuchid
		11.64	2.0)	1	/	7100	Turbid
1:00	0.067	(1, -	, A . U		\			

Davidonor Cionatura:	that.	Date: 9/26/05
Developer Signature:_		
• -		

Attachment 4

FILL MATERIAL SILTS AND CLAYS SANDY GRAVELS SILTY SAND



Blue Lake Belting And Leather Works Blue Lake, California Generalized Cross Section A-A'

SHN 097309

May, 2003 097309-sect-aa

Figure 1

STAT	Blue Lake Belting And Leather W Blue Lake, California	Vorks	Generalized Cross Section B-B'
Consulting Engineers & Geologists, Inc.			SHN 097309
& Geologists, Inc.	May, 2003	97309-sect-bb	Figure 2